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The Gauss Map of a surface patch, S

determine an outward-facing unit normal
vector at z € S n(x).

move the Gauss sphere so that it is centred
at x.

The Gauss map of z is the endpoint of n(x)
on the Gauss sphere.

Do this for all points on the surface patch,
S

resulting patch on the Gauss sphere is the
Gauss map of S
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Gaussian curvature (generic solid angle)

The area of S on the Gauss sphere (G(S)) is

the integral curvature (of the surface patch
S).

if K(x):= Gaussian curvature at x:

//S|K|da — G(9)



L ocal Gauss-Bonnet formula

Suppose the patch S is bounded by a geodesic
polygon containing v vertices, with interior an-
gles between edges at each vertex «;:

//SKdaz (2’0)77—|—]Z::104j



EXxercise 1 Draw the Gauss maps of
1. an upper hemisphere
2. a region surrounding a cube vertex

3. a region surrounding a vertex of the tiling with Schlafli symbol
{6,4}:

o A

T~

and determine their total areas on the sphere, given that the
area of a single cover of the Gauss sphere is 4.

4. Form the Gauss map of a cone with apex angle a, giving a
sector of interior angle 23. Determine the integral curvature
as a function of a. Unzip the cone to form a pie-shaped sector
in the plane. What is the relationship between the apex angle

a and the sector angle? Write down the integral curvature for
a sector angle of 2T,



SOLUTIONS to EXERCISES 1:

5. The Gauss map is a cap of the sphere, subtending an angle
at the centre of m — a, giving a total area (or solid angle) of

2n(r-0) — o(r — q).

The unzipping procedure gives a sector with angle 2a. If

20 = 277’ the integral curvature is 2(w —a) = 2#—27” = —Qw(i_k)-
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Gaussian curvature, K

The Gaussian curvature, K, at a point on the
surface, x can be written in terms of the area
of the Gauss map, G(S) of the surface patch,
S as it shrinks to =z:

lim —G(S)

S—x S
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e Gaussian curvature does not change we bend
or fold a surface, provided the surface is
not stretched or compressed!

e Cylinder, cone, plane: K = 0.

e Saddles have K < 0

e Caps have K > 0.
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EXercise 2 Determine the sign of the Gaussian curvature of
the patches above.

SOLUTION: —,+.0
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2D Non-Euclidean Geometry

homogeneous surfaces have constant
Gaussian curvature at all points on the
surface

Define spaces by metrics inherited by those
surfaces (independent of embeddings in
higher space!) three non-euclidean 2D

spaces:
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e Euclidean plane, E2: K =0

e hyperbolic plane, H?2 : K = —1

Daina Taimina

e clliptic plane S2: K = +1

All extended, disc-like, simply-connected
regions (without any internal holes or
handles).
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Comparing 2D elliptic (S2), euclidean (E?) &
hyperbolic (H?2) spaces:

Feature S? E? H?
# parallel directions 0] 1 many
triangle angle sum < s >
area growth sin?(R) | R? | sinh?(R) exp(R)
(wrt radius) R

Exponential growth of area in
H?2 ~ co—dimensional euclidean space!

So H? must multiply cover normal 3-space
(E3).
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Parallel geodesics on embeddings in space of fragments of (top)
H? and (bottom) S?
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Poincaré disc model of H?:
squeeze entire space into a euclidean unit disc

e geodesics in H?2 are circular arcs that in-
tersect the Poincaré disc boundary at right
angles

ab, cd and ef don't intersect — they are all
(ultra)parallel geodesics in H2!

e shrinkage of actual lengths — increase as
we move to disc boundary (oo in H?)
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e all angles measured on disc are identical to
true angles in H? (conformal)

Triangles on all (Riemannian) 2D spaces are
euclidean when small . ..



Circle Limit IV: Angels and Devils

M.C. Escher.
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Poinc disc

movie

L,
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Topology of surface manifolds and orbifolds

Topology is 'rubber-sheet’ geometry.
(e.g. all simple polyhedra are homeomorphic
to a sphere )

e First, distinguish orientable from non-orientable
manifolds

Orientable manifolds allow for a normal pointing in
one sense at each point, and no reversal by trans-

port around the manifold.

(Left) The non-orientable Moebius strip contains a single
boundary loop (ABA), while its orientable analogue (right)
contains a pair of disjoint boundary loops (AA and BB).
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e Second, distinguish boundary-free mani-
folds from manifolds with boundary
(edge-free or containing edges)

21



Boundary-free manifolds can have:

handles if orientable (# handles = ori-
ented genus)

cross-caps if non-orientable (# cross-caps
— non-oriented genus)

22
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gon with 2 parallel zip-pairs:
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The unzipped form of the torus (a single boundary-free
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From the local Gauss-Bonnet formula:

//SKda=(2—4)7r—|— iw/QzO

j=1

So, all tori are, at least on average, euclidean!

Form one half of a zip-pair on a torus by punch-
ing out a disc.

This iIs a handle — o.



torus movie

'Symmetry at the Alhambra’, Antonio Costa and Bernardo
Gomez, 1999
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Cross-caps: X

.. . difficult to visualise due to

——

7 /]

self-int/e‘rsections in embeddings in 3-space:
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... construct by zipping a single zip-pair:

So the unzipped form of the cross-surface (a single
boundary-free cross-cap) is a 2-gon with 1 anti-parallel
Zip-pair.
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Form one half of a zip-pair on a cross-surface
by punching out a disc.

This is a cross-cap — X.
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EXxercise 3 Is the cross-surface intrinsically elliptic, euclidean
or hyperbolic?

SOLUTIONS to to EXERCISE 3: Use the local Gauss-Bonnet
theorem to deduce the integral curvature of any cross-surface.
Noting that its geodesic polygon contains two vertices gives:

//Kda=(2—2)7r—|—2w=27r
S

T herefore all cross-surfaces have positive integral curvature; in con-
trast to tori, their average geometry is elliptic.
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Boundary-free 2-manifolds
zipped handles and cross-caps

Use handle and cross-cap modules; zip into the
sphere.

e.g. What manifold is produced by a pair of cross-caps,
X X ?

The Klein bottle.
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Many alternative embeddings of this manifold

can be drawn:
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Forming the cross-handle:

The unzipped form of this xx manifold is a
4-gon, similar to the torus, o:

—

\4

—

Both o and xx have the same average geom-
etry (euclidean)!

But o has an orientable handle (orientable genus
1), while xx has a non-orientable cross-handle
(non-orientable genus 2).
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A single cross-cap can be moved through han-
dles, leaving them as cross-handles:

Mixed o,x manifolds are invalid . ..

o) x = x2nt1
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All boundary-free manifolds with genus, g > 0
contain

OR

Bounded manifolds

with n separate boundary loops are formed by
removing n discs

...append xx---x to the symbol.
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e.g. Puncturing the cross-surface, x gives:

t syt s O

.. .the Mobius strip,
X *
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All manifolds with genus > 0 contain

OR

# of o or X entries is the surface genus!
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The sphere, the disc (x) and the cross-surface
(x) are simply connected

All other manifolds are multiply connected:

x ok k, k% and xX

dashed loops cannot shrink to a point in these
manifolds, making them multiply-connected
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Euler-Poincaré characteristic of manifolds, x

e [ he global Gauss Bonnet formula gives the
integral curvature of a boundary-free surface S
as a topological constant, y:

//SKda=27rx(8)

Use this to work out x and the decrease of y, dx for
standard surfaces cf. the sphere:

surface integral curvature | x | dx(sphere)
sphere 471 2 0]
Ccross-surface 27 1 -1
torus 0 0 -2
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e Euler’s equation relates # vertices (v), edges
(e) and faces (f) making a tiling in a surface
with x:

v—e+f=x
Removing a disc (f = —1) from any closed
surface therefore incurs a cost oy = —1.

e A handle (handle) is a torus minus one disc,
SO x per o=-1

e A cross-cap (x) is a cross-surface minus one
disc, so x per x=0
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So the manifold o %/ x* built from a sphere
with 2 4+ 5 4+ £ removed discs, ¢ handles, and k
cross-caps has characteristic:

x(0'%) xK) = 2—(i+j+k)+i(—1)+k(0) = 2—(2i+j+k)

Evidently, most interesting manifolds have
negative x, they are hyperbolic!
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T he universal cover

Zipping up a 2-periodic planar pattern gives a
cylinder, and a torus.

Unzipping an infinite patterned layering on the

torus give a 1- or 2-periodic pattern in E2, de-
pending on how many zip-pairs we unzip.

Equivalently, we print by rolling endlessly and
tile the relevant universal cover ( S2, E2, H?):

AR

John Stillwell

|
\

\

A canonical form for an unzipped manifold o™
IS a polygon with 4n sides, as 2n zips can be
traced from a single point on the manifold, two
along each handle.
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Since each zip gives an independent lattice vec-
tor, printing the manifold o* gives a periodic
pattern with up to 2: independent lattice vec-
tors.



example 1. the genus-2 torus, oo, has y = —2, so it prints onto

H2.
It has 4 independent zip-pairs, allowing 4 translations in its univer-

sal cover:

The illustrated pattern of zips gives a simply-connected octagon
in H? with maximum symmetry %288.
The universal cover has Schlafli symbol {8,8}

41



o (handles) induce translations

42



example 2: printing a patterned Klein bottle, x x
(x = 0, so it prints to E2?):

H_

;
o

-

Zip-pair orientation for x x defines pgg pattern




example 3: printing a bounded manifold, xx
(x = 0, so it prints to E2):

roll the manifold about its central axis, filling a single strip of
E2

turn through 180° at each point on the x boundaries

continue printing from the other side

Zip-pair orientation for xx defines pmm pattern
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* boundaries are mirrors
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example 4: printing a bounded non-oriented manifold, *x (M&bius
strip)
(x = 0, so it prints to E?2):

1. unzip the manifold, giving a pair oppositely oriented sides
2. replicate along one axis according to edge orientations

3. replicate along other axis by reflecting in the boundary

-

3"'2_"
e

-
/.

.2_..45_._

Zip-pair orientation for xx defines em pattern
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x (cross-caps) induce glides

a7



From manifolds to orbifolds

If we add (non-manifold) cone
points, we have a complete
description of 2D orbifolds.

1. Cone points not coincident with

MIirrors:

x due to a cone point of order A is 471 (from

integral curvature of a cone)

48



Cone-point of order A

induces A-fold rotational symmetry

49



corner point of order k (xk)

2. Cone point on k mirrors:

x due to a corner point of order k is ~;1

cone point

mirror line

N\

corner points (*k)
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x Of any orbifold

e Build an orbifold by zipping modules into the base
orbifold: the sphere.

e The Euler-Poincaré characteristic, x of the resulting
orbifold is given by summing xm.q Over all modules:

Orbifold module | symbol 2D symmetry Xmod
Sphere (-1) identity +2
Handle o translation -2

Cone-point A A-fold 41
(order A) centre of rotation
Boundary * mirror line -1

Corner point (x)m intersection of T
(angle ™) m mirrors
Cross-cap X glide line -1

e.g. oPABC x ijk * Imx°©

(conventionally written as ABC x ijk x Imx<t2"):

A-1 B-1 C-1
x = 2-{2h+ STt
1 —1 45-1 k-1
1+ 21 T 27 T 2k
[—1 m—1
+1 4+ ol + 5 + 1.c¢}
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e ANY character string combining in-
tegers (1,2,...), handles (o), mirrors
(x) and crosscaps (x) is a valid orb-

ifold symbol

EXCEPT A and AB, xA and xAB, where
A #* B.

(The notation system, zip concept and rules are due to John Con-
way).

Exercise 4 Can you see why these four Conway symbols are bad
orbifolds?

SOLUTION to EXERCISE 4: Look at forming these as symmetries
on the sphere. The presence of a rotational symmetry centre (on
or off a mirror) induces the same order centre at the antipode on
the sphere. Thus, a pair of cone of corner points is needed.
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There is some redundancy in words:

e Cone points and distinct mirror boundaries
(with accompanying corner points) can be
shuffled at will

e corner points belonging to a single mirror
boundary can be cyclically reordered.

e ordering of corner points belonging to any
mirror string can be reversed for non-orientable
manifolds; all corner points must be simul-
taneously reversed for orientable manifolds

e.g.

0246 % 34 x 456 = 0462 x 654 x 43
246 * 34 x 456 x= 426 x 654 x 34 x
53



Exercise 5 Determine the characteristic and universal cover of the
following orbifolds (preferably without looking at the Tables be-
low)!:

1. x632
2. 632
3. %532

4. %732

6. Determine the orbifold type for the pattern below:

54



SOLUTIONS to EXERCISES 5

55



Orbifold Taxonomy

e \We propose the following families:

Coxeter, Hat, Stellate, Projective, Annulus,
Mobius, Torus and Klein

T he two rows collect simply- and multiply-connected
orbifolds.
56



An aide memoire:

Churlish Hatred of Symbols Prevents Acquisition

of Modern Topological Knowledge.
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The relevant family can be read from the
Conway orbifold symbol at a glance ...

Abbreviation Symbol

Simply connected:
Mirror edges C *x17 ...k
H A...Bx1j...k

Edge-free S A...B
P A...BXx
Multiply connected:
Mirror edges A o---0A...Bx*xt...5---%k
M A...B*xt...5%xk...[lx---X
Edge-free T o---0A...B
K A...Bx---X
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A decision tree to determine orbifold
families:

59



Why bother with orbifolds?

. Conway symbols allow for coherent nota-
tion across all 2D geometries.

. Symbols unify topology with symmetry

. Systematic enumeration of 2d tilings and
nets is possible, using Delaney-Dress theory

. Almost trivial enumeration of point groups
(on S2) and plane groups (on S2):

point groups iff x > 0
plane groups iff x =0

60



Orbifolds on E? and S2%: Plane and Point Groups

Family Conway symbol

Coxeter *632 pbm
(C) *x442 p4dm
x*333 p3m1l

%2222 pmm

%k pm

Hat 4 x 2 p4g
(H) 3%3 p31m
2% 22 cmm

22x% pmg

Stellate 632 pP6

(S) 442 p4

333 pP3

2222 p2
Projective plane (P) 22% Pgg
Annulus (A) * % pm
Mobius band (M) * X cm
Torus (T) 0 pl
Klein bottle (K) X X pg

61
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Family Order Characteristic Orbifold
Coxeter 120 = ¥235 — Iy
(O 48 % *x234 m3m Oy,
24 ? %233 43m Ty
24 i *226 6/mmm  Degy
16 = *x224 4/mmm  Dgp
12 i %223 62m D3y,
8 i x222 mmm Dy,
4K % *20K — Dgn
12 2 *66 6mm Cou
8 i *44 dmm Cay
6 i x33 3m C3y
4 % *x22 mm?2 Coy
2 1 * m Cs
2k z «kk — Cho
Hat 24 > 3 %2 m3 T
(H) 12 1 2 %3 3m D3q
8 % 2% 2 ZQm D2d
12 L 6 6/m Csh
8 % 4x 4/m Cap,
6 L 3% 6 C3h
4 1 2 2/m Con
2k % k* — Crh
Stellate 60 =5 235 — I
(S) 24 ? 234 432 @)
12 = 233 23 T
12 i 226 622 Deg
6 i 66 §) Ce
6 i 223 32 Ds
3 2 33 3 C3
38 i 224 422 Dy
4 i 44 4 Cy
4 % 222 222 D>
2 1 22 2 C>
k : kk — Cy,
Projective 6 1 3% 3 Ci
(P) 4 % 2x 4 Sy
2 1 X 1 C




Symmetry mutation within an orbifold family:

Orbifold Species

Changing the values of the integers - mutates
the orbifold within a single species.

Allows single families to span all three 2D ge-
ometries, from S2 to H?2.

e.g. Coxeter orbifold x235 — %236 — *x237

S2—>E2—>H2
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3x2

4x 2 3 %3

5_ * 2

6 x 2 6>|<.3

Hat mutations:
All examples have Conway symbol k xm, where k varies between 3
and 6 and m between 2 and 3.
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Exercise 6 1. Identify the orbifolds in the series of patterns in the

W N

Figures and draw their topological form. (The first images of
each series are pentagonal tilings of the flat plane, discovered
by Marjorie Rice.)

How may species are collected here?
Sketch a possible shape for these orbifolds (one for each species).



SOLUTIONS to EXERCISES 6:

1. 2222,3222,4222,5222,6222,32%x,42Xx,52X,62X,72X.
2. 2.
3.
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Decorating orbifolds to get hyperbolic nets

e Use Delaney-Dress tiling theory to enumer-
ate all tilings up to equivariance
— l.e. tilings with distinct 2D topology and
2D symmetry

e Done this for Fundamental tilings, 131 hy-
perbolic groups:

="

e FSG- and FSGG tilings.

67



Group-subgroup relations and orbifolds

x| ~ area of asymmetric domain in universal
cover (by global Gauss-Bonnet)

e Any point group P acts on the sphere, S2
(x = 2), so:

2
P =P

e Hyperbolic groups may act on a multiply-
connected hyperbolic manifold (whose topol-

ogy is given by x) in HZ2.
The order of such a group, H, in that mani-
fold is:

X

O =1
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e Highest order point group has smallest pos-
itive x: *x235

_ 1
X = &0

e Highest order hyperbolic symmetry group has
largest negative y: *x237

— 1
X = 784

T his cannot be realised in 3-space without dis-
tortion . ..

Most symmetric embeddings are on the genus 3 torus (*237/03)

www.math.uni-siegen.de/wills/klein/;
gregegan.customer.netspace.net.au/SCIENCE/KleinQuartic/KleinQuartic.html
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Highest order hyperbolic symmetries:

Cost Class orbifolds
™ C %237
T C x238
;—21 S 237
s C %245
g—é C x239
o C %23(10)
= C x23(11)
or C  x246, x23(12), *334

S 238
== C x23(13)
oF C x23(14)
o C x23(15)

S 245

70



Can we realise any of these in E3?

e.g. x246:

Embedding of the hyperbolic manifold %246/ o
oo (the genus 3 torus with *x246 internal sym-

metry), as a branched (double) covering of the
sphere, symmetry x234.
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EXxercise 7 Alternative embeddings of
*x246/ o oo.

Find the orbifold symbols and sub-group orders of the elliptic
(sub-)groups (point groups) of the three embeddings in E3 of tilings
by x246 triangles shown below.

SOLUTIONS to EXERCISES 7: Clockwise from top left: 3x,2 x
2, %224
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%246 can be faithfully embedded in E3 iff the
embedding surface has unbounded genus:

Simplest geometrical realisations are the
3-periodic minimal surfaces:

P surface

73



D (tamond) surface

74






e [ hey have identical universal covers, since
they have identical Gauss maps.

—

76



Any pattern in H? whose orbifold symme-
try is a sub-group of x246 can be faithfully
embedded into E3 via these surfaces.

We choose patterns that respect all translational sym-
metries of these (cubic) surfaces.

e All three surfaces have euclidean unit cells (b/w)—
x = —4, genus 3, (orientable) manifold o3.

7



e [ heir pure translational hyperbolic sub-group
o3 map to a dodecagon in the universal cover.
e Euclidean translations are a subset of the 6
hyperbolic translations, {t;,7;},1 = 1,2,3, join-
ing opposite long and short edges

e P, GG, D have different combinations of {¢;, 7;} —
lattice vectors in E3.
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Escher movie
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Finding commensurate hyperbolic groups

e encode the finite group %246/03 by adding
extra relations to the infinite group *x246.
e these relations define the {¢;, ;} zip-pairs
e determine all groups that are super-groups
of o3 and sub-groups of x246
— 131 crystallographic hyperbolic groups are
found, belonging to 90 hyperbolic orbifolds.
— 14 pure reflection groups, giving 11 distinct
Cozxeter orbifolds (43 isomorphisms)

80



isomorphisms of x2244: zeolite frameworks
ACO and ATN



Crystallographic hyperbolic orbifolds

Family Orbifolds
C x246, *x266, x2224, %2223, x344, x2323,
x2244, x22222 (x2°), x2626, x2°, %44
H 2%x32,4%x3, 6x2, 2x26, 2x33, 3x22,
22 %2, 24x%, 2x44, 4 x22, 2 %222, 22 %3,
2% 2% 22 %22 44x, 222x, 22 x 2% 2%
S 246, 266, 2223, 344, 2224, 2226,
2323, 2244, 24 25 2266, 243,
26 44 28
P 23x, 62X, 44x, 222x, 2%x
A x % 2, k22%, ¥2 %2, 2% %, xx 22, x3 % 3,
%22 % 22, % %k, 22 % %k, Ok, O * %
M *¥3X , 2% X, ¥x22X, 22 % X, k% X, * X X
k24X, k% X X
T 02, 03, 022, 033, oo, 024 ocoo
K 2% X, 3xx,22x x, x*
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EPINET = Euclidean Patterns in
Non-Euclidean Tilings

epinet.anu.edu.au
e catalog of hyperbolic h — nets

e cach h — net — e(pi) — net
— the geometry induced by the P, D, G retic-
ulation
( e — nets can be knotted)

e ¢ — net — s(ystre) — net
— the canonical barycentric placement of Del-
gado Friedrichs and O'Keeffe

82



< 2D HYPERBOLIC 3D EUCLIDEAN >

T 7]

1 .,

tilings e N

: ,

o-nets _> e-nets

crystallographic
orbifolds

h-nets

symmetrize using
SYSTRE

s-nets
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uUsing H? to get euclidean structures:
s-nets

e build the h — net from standard DD tiling
theory applied to relevant hyperbolic orbifold

(0).

e the topology of the euclidean wrapping (s —
net) can be determined directly from the h —

net in H?:

—label all 96 x246 triangles in the dodecagon (= xi‘fﬁ?e-))-

—place symmetrically distinct vertices in a single do-
main of the orbifold O labelled domain

— find the %246 triangles of all neighbouring vertices
(at other ends of edges from distinct vertices)

— determine the label of these triangles as a word in
the %246 group

—rewrite as t, T word
—rewrite t,7 word as a euclidean lattice vector

e this gives the Systre key, that identifies the s-net in
3D.
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Using H? to get euclidean structures:
e-nets

We are working on a different scheme to get e — nets, that relies
on the mapping of pure rotations (cone points) and translations in
H?2 to identical symmetry operators in E3 . ..

Suppose the e — net has orbifold @, on a TPMS whose
Gauss map has (Coxeter) orbifold G, where G is a sym-
metry mutation of O:

form sub-orbifold @ of O, with no % or x characters
(by successive zipping of copies of O, giving cones
from corners and translations from cross-caps).

find the corresponding sub-group of the Gauss map,
g/

use a quasi-conformal map to transform all points in a
single ©’ domain in H? onto ¢’, in S? (a la Thurston’s
numerical maps)

map the sites in G’ to cartesian positions in E3 using
the Weierstrass-Enneper equations for minimal sur-
faces

reorient and scale the cartesian positions to match
them with crystal coordinates of an asymmetric do-
main of the surface in the space group corresponding
to O'.

determine crystal coords of all edges in h-net within a
single @’ domain

extend to form 3-periodic euclidean structure using
euclidean rotation and translation operations corre-
sponding to cone points, translations in the orbifold
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e A Platonic tiling of H? with six hyperbolic squares per vertex,

{4,6}.

e The resulting h—net is drawn in the Poincaré disc model of H?Z,
shaded to reveal the kaleidoscopic symmetry of the tiling.

e Surface reticulation of the {4,6} h —net onto a fragment of the
P three-periodic minimal surface.
The resulting e—net

e its barycentric embedding, the s—net labelled scql, identical to
pcu.
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h — net — s — net IS many-to-one:

e Wrapping of (4.8.8.4.8.8) tilings of H? to form the pcu net

e Alternative locations of the h—net in H2, both with orbifold sym-
metry %4444

e Wrapping onto the P and D surfaces, to give tetragonal and
orthorhombic surface reticulations (e—nets)
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Most symmetric crystallographic sub-group of
optimal hyperbolic orbifold *x237 has Stellate

orbifold 2223.

This wraps on the P and D to give:

3T g
< \*-
i

I
g

L

The D embedding relaxes to the low density sphere packing made
of regular icosahedra and octahedra:

88






Key references

e A comprehensive list of relevant references can be found on the
epinet website.

e Good general texts are those by Thurston, Coxeter and Stillwell.

e A very easy introduction to manifolds and geometry is Weeks’
book.

e An excellent introduction to, " Geometry and the Imagination
in Minneapolis” ,covering orbifolds, non-euclidean geometry and
topology can be obtained in an abbreviated form from the web.
(Unfortunately, potentially confusing (now outdated) notation is
used for handles and cross-caps in these notes. Handles and
Cross-caps are conventionally denoted by o and x respectively;
the Minneapolis notes use e and o).

[0, 0, 0, O, O, 0, 0]
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