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The Gauss Map of a surface patch, S

• determine an outward-facing unit normal

vector at x ∈ S: n(x).

• move the Gauss sphere so that it is centred

at x.

• The Gauss map of x is the endpoint of n(x)

on the Gauss sphere.

• Do this for all points on the surface patch,

S

• resulting patch on the Gauss sphere is the

Gauss map of S
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Gaussian curvature (generic solid angle)

The area of S on the Gauss sphere (G(S)) is

the integral curvature (of the surface patch

S).

if K(x):= Gaussian curvature at x:

∫ ∫
S
|K|da = G(S)
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Local Gauss-Bonnet formula

Suppose the patch S is bounded by a geodesic

polygon containing v vertices, with interior an-

gles between edges at each vertex αj:

a1

a2

a3

a4

∫ ∫
S

Kda = (2− v)π +
v∑

j=1

αj
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Exercise 1 Draw the Gauss maps of

1. an upper hemisphere

2. a region surrounding a cube vertex

3. a region surrounding a vertex of the tiling with Schläfli symbol
{6,4}:

and determine their total areas on the sphere, given that the
area of a single cover of the Gauss sphere is 4π.

4. Form the Gauss map of a cone with apex angle a, giving a
sector of interior angle 2β. Determine the integral curvature
as a function of a. Unzip the cone to form a pie-shaped sector
in the plane. What is the relationship between the apex angle
a and the sector angle? Write down the integral curvature for
a sector angle of 2π

k
.
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SOLUTIONS to EXERCISES 1:

1.

2.

3.

4.

5. The Gauss map is a cap of the sphere, subtending an angle
at the centre of π − a, giving a total area (or solid angle) of
2π(π−a)

π
= 2(π − a).

a
π-a

2a

The unzipping procedure gives a sector with angle 2a. If
2a = 2π

k
, the integral curvature is 2(π−a) = 2π− 2π

k
= 2π(1−k)

k
.
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Gaussian curvature, K

The Gaussian curvature, K, at a point on the

surface, x can be written in terms of the area

of the Gauss map, G(S) of the surface patch,

S as it shrinks to x:

lim
S→x

G(S)

S
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• Gaussian curvature does not change we bend

or fold a surface, provided the surface is

not stretched or compressed!

• Cylinder, cone, plane: K = 0.

• Saddles have K < 0

• Caps have K > 0.

Exercise 2 Determine the sign of the Gaussian curvature of
the patches above.

SOLUTION: −,+,0
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2D Non-Euclidean Geometry

homogeneous surfaces have constant

Gaussian curvature at all points on the

surface

Define spaces by metrics inherited by those

surfaces (independent of embeddings in

higher space!) three non-euclidean 2D

spaces:
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• Euclidean plane, E2 : K = 0

• hyperbolic plane, H2 : K = −1

Daina Taimina

• elliptic plane S2 : K = +1

All extended, disc-like, simply-connected

regions (without any internal holes or

handles).
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Comparing 2D elliptic (S2), euclidean (E2) &

hyperbolic (H2) spaces:

Feature S2 E2 H2

# parallel directions 0 1 many

triangle angle sum < π π > π

area growth sin2(R) R2 sinh2(R) exp(R)
(wrt radius) R

Exponential growth of area in

H2 ∼ ∞−dimensional euclidean space!

So H2 must multiply cover normal 3-space

(E3).
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Daina Taimina

Parallel geodesics on embeddings in space of fragments of (top)
H2 and (bottom) S2

16



Poincaré disc model of H2:

squeeze entire space into a euclidean unit disc

• geodesics in H2 are circular arcs that in-

tersect the Poincaré disc boundary at right

angles

ab, cd and ef don’t intersect – they are all

(ultra)parallel geodesics in H2!

• shrinkage of actual lengths – increase as

we move to disc boundary (∞ in H2)
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• all angles measured on disc are identical to

true angles in H2 (conformal)

Triangles on all (Riemannian) 2D spaces are

euclidean when small . . .



M.C. Escher. Circle Limit IV: Angels and Devils
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Poinc disc movie
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Topology of surface manifolds and orbifolds

Topology is ’rubber-sheet’ geometry.
(e.g. all simple polyhedra are homeomorphic

to a sphere )

• First, distinguish orientable from non-orientable

manifolds

Orientable manifolds allow for a normal pointing in
one sense at each point, and no reversal by trans-
port around the manifold.

(Left) The non-orientable Moebius strip contains a single
boundary loop (ABA), while its orientable analogue (right)
contains a pair of disjoint boundary loops (AA and BB).
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• Second, distinguish boundary-free mani-

folds from manifolds with boundary

(edge-free or containing edges)
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Boundary-free manifolds can have:

• handles if orientable (# handles = ori-

ented genus)

• cross-caps if non-orientable (# cross-caps

= non-oriented genus)
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Handles: ◦

The unzipped form of the torus (a single boundary-free
handle) is a 4-gon with 2 parallel zip-pairs:
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From the local Gauss-Bonnet formula:∫ ∫
S

Kda = (2− 4)π +
4∑

j=1

π/2 = 0

So, all tori are, at least on average, euclidean!

Form one half of a zip-pair on a torus by punch-
ing out a disc.

This is a handle – ◦.



torus movie

’Symmetry at the Alhambra’, Antonio Costa and Bernardo
Gómez, 1999
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Cross-caps: ×

. . . difficult to visualise due to

self-intersections in embeddings in 3-space:
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. . . construct by zipping a single zip-pair:

So the unzipped form of the cross-surface (a single
boundary-free cross-cap) is a 2-gon with 1 anti-parallel
zip-pair.
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Form one half of a zip-pair on a cross-surface

by punching out a disc.

This is a cross-cap – ×.
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Exercise 3 Is the cross-surface intrinsically elliptic, euclidean
or hyperbolic?

SOLUTIONS to to EXERCISE 3: Use the local Gauss-Bonnet
theorem to deduce the integral curvature of any cross-surface.
Noting that its geodesic polygon contains two vertices gives:

∫ ∫
S

Kda = (2− 2)π + 2π = 2π

Therefore all cross-surfaces have positive integral curvature; in con-
trast to tori, their average geometry is elliptic.
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Boundary-free 2-manifolds

zipped handles and cross-caps

Use handle and cross-cap modules; zip into the

sphere.

e.g. What manifold is produced by a pair of cross-caps,
××?

The Klein bottle.
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Many alternative embeddings of this manifold
can be drawn:

30



Forming the cross-handle:

The unzipped form of this ×× manifold is a
4-gon, similar to the torus, ◦:

Both ◦ and ×× have the same average geom-
etry (euclidean)!

But ◦ has an orientable handle (orientable genus
1), while ×× has a non-orientable cross-handle
(non-orientable genus 2).
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A single cross-cap can be moved through han-
dles, leaving them as cross-handles:

Mixed ◦,× manifolds are invalid . . .

◦n
⊕

× = ×2n+1
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All boundary-free manifolds with genus, g > 0

contain

◦ . . .

OR

× . . .

Bounded manifolds

with n separate boundary loops are formed by

removing n discs

. . . append ∗ ∗ · · · ∗ to the symbol.
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e.g. Puncturing the cross-surface, × gives:

. . . the Möbius strip,

×∗
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All manifolds with genus > 0 contain

• ◦ · · · ∗ . . .

OR

• × · · · ∗ . . .

# of ◦ or × entries is the surface genus!
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The sphere, the disc (∗) and the cross-surface

(×) are simply connected

All other manifolds are multiply connected:

∗ ∗ ∗, ∗∗ and ∗×

dashed loops cannot shrink to a point in these
manifolds, making them multiply-connected
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Euler-Poincaré characteristic of manifolds, χ

• The global Gauss Bonnet formula gives the

integral curvature of a boundary-free surface S
as a topological constant, χ:∫ ∫

S
Kda = 2πχ(S)

Use this to work out χ and the decrease of χ, δχ for
standard surfaces cf. the sphere:

surface integral curvature χ δχ(sphere)
sphere 4π 2 0

cross-surface 2π 1 -1
torus 0 0 -2
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• Euler’s equation relates # vertices (v), edges

(e) and faces (f) making a tiling in a surface

with χ:

v − e + f = χ

Removing a disc (f = −1) from any closed

surface therefore incurs a cost δχ = −1.

• A handle (handle) is a torus minus one disc,

so χ per ◦=-1

• A cross-cap (×) is a cross-surface minus one

disc, so χ per ×=0
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So the manifold ◦i ∗j ×k, built from a sphere

with i + j + k removed discs, i handles, and k

cross-caps has characteristic:

χ(◦i∗j×k) = 2−(i+j+k)+i(−1)+k(0) = 2−(2i+j+k)

Evidently, most interesting manifolds have

negative χ; they are hyperbolic!
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The universal cover

Zipping up a 2-periodic planar pattern gives a

cylinder, and a torus.

Unzipping an infinite patterned layering on the

torus give a 1- or 2-periodic pattern in E2, de-

pending on how many zip-pairs we unzip.

Equivalently, we print by rolling endlessly and

tile the relevant universal cover ( S2, E2, H2):

John Stillwell

A canonical form for an unzipped manifold ◦n

is a polygon with 4n sides, as 2n zips can be

traced from a single point on the manifold, two

along each handle.
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Since each zip gives an independent lattice vec-

tor, printing the manifold ◦i gives a periodic

pattern with up to 2i independent lattice vec-

tors.



example 1 : the genus-2 torus, ◦◦, has χ = −2, so it prints onto
H2.
It has 4 independent zip-pairs, allowing 4 translations in its univer-
sal cover:

The illustrated pattern of zips gives a simply-connected octagon
in H2 with maximum symmetry ∗288.

The universal cover has Schläfli symbol {8,8}
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◦ (handles) induce translations
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example 2 : printing a patterned Klein bottle, ××
(χ = 0, so it prints to E2):

Zip-pair orientation for ×× defines pgg pattern
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example 3 : printing a bounded manifold, ∗∗
(χ = 0, so it prints to E2):

1. roll the manifold about its central axis, filling a single strip of
E2

2. turn through 180◦ at each point on the ∗ boundaries

3. continue printing from the other side

Zip-pair orientation for ∗∗ defines pmm pattern
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∗ boundaries are mirrors
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example 4 : printing a bounded non-oriented manifold, ∗× (Möbius
strip)

(χ = 0, so it prints to E2):

1. unzip the manifold, giving a pair oppositely oriented sides

2. replicate along one axis according to edge orientations

3. replicate along other axis by reflecting in the boundary

Zip-pair orientation for ∗× defines cm pattern
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× (cross-caps) induce glides

47



From manifolds to orbifolds

If we add (non-manifold) cone

points, we have a complete

description of 2D orbifolds.

1. Cone points not coincident with

mirrors:

C

A/B

S

S

S

S S

S

C

A

χ due to a cone point of order A is A−1
A (from

integral curvature of a cone)
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Cone-point of order A

induces A-fold rotational symmetry
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corner point of order k (∗k)

2. Cone point on k mirrors:

χ due to a corner point of order k is k−1
2k

cone point

corner points (*k)

2π/k

mirror line
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χ of any orbifold
• Build an orbifold by zipping modules into the base

orbifold: the sphere.

• The Euler-Poincaré characteristic, χ of the resulting
orbifold is given by summing χmod over all modules:

Orbifold module symbol 2D symmetry χmod

Sphere (-1) identity +2

Handle ◦ translation -2

Cone-point A A-fold −A−1
A

(order A) centre of rotation

Boundary ∗ mirror line -1

Corner point (∗)m intersection of −m−1
2m

(angle π
m
) m mirrors

Cross-cap × glide line -1

e.g. ◦hABC ∗ ijk ∗ lm×c

(conventionally written as ABC ∗ ijk ∗ lm×c+2h):

χ = 2− {2.h +
A− 1

A
+

B − 1

B
+

C − 1

C
+

1 +
i− 1

2i
+

j − 1

2j
+

k − 1

2k

+1 +
l − 1

2l
+

m− 1

2m
+ 1.c}
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• ANY character string combining in-

tegers (1,2, . . . ), handles (◦), mirrors

(∗) and crosscaps (×) is a valid orb-

ifold symbol

EXCEPT A and AB, ∗A and ∗AB, where

A 6= B.

(The notation system, zip concept and rules are due to John Con-
way).

Exercise 4 Can you see why these four Conway symbols are bad
orbifolds?

SOLUTION to EXERCISE 4: Look at forming these as symmetries
on the sphere. The presence of a rotational symmetry centre (on
or off a mirror) induces the same order centre at the antipode on
the sphere. Thus, a pair of cone of corner points is needed.
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There is some redundancy in words:

• Cone points and distinct mirror boundaries
(with accompanying corner points) can be
shuffled at will

• corner points belonging to a single mirror
boundary can be cyclically reordered.

• ordering of corner points belonging to any
mirror string can be reversed for non-orientable
manifolds; all corner points must be simul-
taneously reversed for orientable manifolds

e.g.

◦246 ∗ 34 ∗ 456 = ◦462 ∗ 654 ∗ 43
246 ∗ 34 ∗ 456×= 426 ∗ 654 ∗ 34×
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Exercise 5 Determine the characteristic and universal cover of the
following orbifolds (preferably without looking at the Tables be-
low)!:

1. ∗632

2. 632

3. ∗532

4. ∗732

5. ◦3

6. Determine the orbifold type for the pattern below:
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SOLUTIONS to EXERCISES 5

1. 0, E2

2. 0, E2

3. 1
60

, S2

4. −1
84

, H2

5. -4, H2

6. ∗344

55



Orbifold Taxonomy

• We propose the following families:

Coxeter, Hat, Stellate, Projective, Annulus,
Möbius, Torus and Klein

The two rows collect simply- and multiply-connected
orbifolds.
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An aide memoire:

Churlish Hatred of Symbols Prevents Acquisition

of Modern Topological Knowledge.
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The relevant family can be read from the

Conway orbifold symbol at a glance . . .

Abbreviation Symbol

Simply connected:
Mirror edges C ∗ij . . . k

H A . . . B ∗ ij . . . k

Edge-free S A . . . B
P A . . . B×

Multiply connected:
Mirror edges A ◦ · · · ◦A . . . B ∗ i . . . j · · · ∗ k . . . l

M A . . . B ∗ i . . . j ∗ k . . . l ∗ · · · × · · · ×

Edge-free T ◦ · · · ◦A . . . B
K A . . . B × · · ·×
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A decision tree to determine orbifold

families:
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Why bother with orbifolds?

1. Conway symbols allow for coherent nota-
tion across all 2D geometries.

2. Symbols unify topology with symmetry

3. Systematic enumeration of 2d tilings and
nets is possible, using Delaney-Dress theory

4. Almost trivial enumeration of point groups
(on S2) and plane groups (on S2):

point groups iff χ > 0

plane groups iff χ = 0
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Orbifolds on E2 and S2: Plane and Point Groups

Family Conway symbol
Coxeter ∗632 p6m

(C) ∗442 p4m
∗333 p3m1
∗2222 pmm
∗∗ pm

Hat 4 ∗ 2 p4g
(H) 3 ∗ 3 p31m

2 ∗ 22 cmm
22∗ pmg

Stellate 632 p6
(S) 442 p4

333 p3
2222 p2

Projective plane (P) 22× pgg
Annulus (A) ∗∗ pm

Möbius band (M) ∗× cm
Torus (T) ◦ p1

Klein bottle (K) ×× pg
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Family Order Characteristic Orbifold
Coxeter 120 1

60
∗235 − Ih

(C) 48 1
24

∗234 m3m Oh

24 1
12

∗233 43m Td

24 1
12

∗226 6/mmm D6h

16 1
8

∗224 4/mmm D4h

12 1
6

∗223 62m D3h

8 1
4

∗222 mmm D2h

4k 1
2k

*22k − Dkh

12 1
6

∗66 6mm C6v

8 1
4

∗44 4mm C4v

6 1
3

∗33 3m C3v

4 1
2

∗22 mm2 C2v

2 1 ∗ m Cs

2k 1
k

∗kk − Ckv

Hat 24 1
12

3 ∗ 2 m3 Th

(H) 12 1
6

2 ∗ 3 3m D3d

8 1
4

2 ∗ 2 42m D2d

12 1
6

6∗ 6/m C6h

8 1
4

4∗ 4/m C4h

6 1
3

3∗ 6 C3h

4 1
2

2∗ 2/m C2h

2k 1
k

k∗ − Ckh

Stellate 60 1
30

235 − I

(S) 24 1
12

234 432 O

12 1
6

233 23 T

12 1
6

226 622 D6

6 1
3

66 6 C6

6 1
3

223 32 D3

3 2
3

33 3 C3

8 1
4

224 422 D4

4 1
2

44 4 C4

4 1
2

222 222 D2

2 1 22 2 C2

k 2
k

kk − Ck

Projective 6 1
3

3× 3 C3i

(P) 4 1
2

2× 4 S4

2 1 × 1 Ci



Symmetry mutation within an orbifold family:

Orbifold Species

Changing the values of the integers - mutates

the orbifold within a single species.

Allows single families to span all three 2D ge-

ometries, from S2 to H2.

e.g. Coxeter orbifold ∗235 → ∗236 → ∗237

S2 → E2 → H2
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3 ∗ 2

4 ∗ 2 3 ∗ 3

5 ∗ 2 5 ∗ 3

6 ∗ 2 6 ∗ 3

Hat mutations:
All examples have Conway symbol k ∗m, where k varies between 3

and 6 and m between 2 and 3.
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Exercise 6 1. Identify the orbifolds in the series of patterns in the
Figures and draw their topological form. (The first images of
each series are pentagonal tilings of the flat plane, discovered
by Marjorie Rice.)

2. How may species are collected here?

3. Sketch a possible shape for these orbifolds (one for each species).
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SOLUTIONS to EXERCISES 6:

1. 2222,3222,4222,5222,6222,32×,42×,52×,62×,72×.
2. 2.
3.
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Decorating orbifolds to get hyperbolic nets

• Use Delaney-Dress tiling theory to enumer-
ate all tilings up to equivariance
– i.e. tilings with distinct 2D topology and
2D symmetry

• Done this for Fundamental tilings, 131 hy-
perbolic groups:

• FG tilings:

• FS tilings:

• FSG- and FSGG tilings.
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Group-subgroup relations and orbifolds

|χ| ∼ area of asymmetric domain in universal
cover (by global Gauss-Bonnet)

• Any point group P acts on the sphere, S2

(χ = 2), so:

O(P) =
2

χ(P)

• Hyperbolic groups may act on a multiply-
connected hyperbolic manifold (whose topol-
ogy is given by χ) in H2.
The order of such a group, H, in that mani-
fold is:

O(H) =
χ

χ(H)

68



• Highest order point group has smallest pos-
itive χ: ∗235

χ = 1
60

• Highest order hyperbolic symmetry group has
largest negative χ: ∗237

χ = − 1
84

This cannot be realised in 3-space without dis-
tortion . . .

Most symmetric embeddings are on the genus 3 torus (∗237/◦3)

www.math.uni-siegen.de/wills/klein/;
gregegan.customer.netspace.net.au/SCIENCE/KleinQuartic/KleinQuartic.html
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Highest order hyperbolic symmetries:

Cost Class orbifolds

−1
84

C ∗237

−1
48

C ∗238

−1
42

S 237

−1
40

C ∗245

−1
36

C ∗239

−1
30

C ∗23(10)

−5
132

C ∗23(11)

−1
24

C ∗246, ∗23(12), ∗334
S 238

−7
156

C ∗23(13)

−1
21

C ∗23(14)

−1
20

C ∗23(15)
S 245
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Can we realise any of these in E3?

e.g. ∗246:

Embedding of the hyperbolic manifold ∗246/ ◦
◦◦ (the genus 3 torus with ∗246 internal sym-

metry), as a branched (double) covering of the

sphere, symmetry ∗234.
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Exercise 7 Alternative embeddings of

∗246/ ◦ ◦◦.
Find the orbifold symbols and sub-group orders of the elliptic
(sub-)groups (point groups) of the three embeddings in E3 of tilings
by ∗246 triangles shown below.

SOLUTIONS to EXERCISES 7: Clockwise from top left: 3×,2 ∗
2, ∗224
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∗246 can be faithfully embedded in E3 iff the

embedding surface has unbounded genus:

Simplest geometrical realisations are the

3-periodic minimal surfaces:

P surface
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D(iamond) surface
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G surface
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• They have identical universal covers, since

they have identical Gauss maps.
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Any pattern in H2 whose orbifold symme-

try is a sub-group of ∗246 can be faithfully

embedded into E3 via these surfaces.

We choose patterns that respect all translational sym-
metries of these (cubic) surfaces.
• All three surfaces have euclidean unit cells (b/w)→
χ = −4, genus 3, (orientable) manifold ◦3.
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• Their pure translational hyperbolic sub-group

◦3 map to a dodecagon in the universal cover.

• Euclidean translations are a subset of the 6

hyperbolic translations, {ti, τi}, i = 1,2,3, join-

ing opposite long and short edges

• P, G, D have different combinations of {ti, τi} →
lattice vectors in E3.
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Escher movie
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Finding commensurate hyperbolic groups

• encode the finite group ∗246/◦3 by adding

extra relations to the infinite group ∗246.

• these relations define the {ti, τi} zip-pairs

• determine all groups that are super-groups

of ◦3 and sub-groups of ∗246

– 131 crystallographic hyperbolic groups are

found, belonging to 90 hyperbolic orbifolds.

– 14 pure reflection groups, giving 11 distinct

Coxeter orbifolds (+3 isomorphisms)
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isomorphisms of ∗2244: zeolite frameworks

ACO and ATN



Crystallographic hyperbolic orbifolds

Family Orbifolds

C ∗246, ∗266, ∗2224, ∗2223, ∗344, ∗2323,
∗2244, ∗22222 (∗25), ∗2626, ∗26, ∗44

H 2 ∗ 32, 4 ∗ 3, 6 ∗ 2, 2 ∗ 26, 2 ∗ 33, 3 ∗ 22,
22 ∗ 2, 24∗, 2 ∗ 44, 4 ∗ 22, 2 ∗ 222, 22 ∗ 3,

2 ∗ 24, 22 ∗ 22, 44∗, 222∗, 22 ∗ 24, 24∗

S 246, 266, 2223, 344, 2224, 2226,
2323, 2244, 24, 25, 2266, 243,

26, 44, 28

P 23×, 62×, 44×, 222×, 24×

A ∗ ∗ 2, ∗22∗, ∗2 ∗ 2, 2 ∗ ∗, ∗ ∗ 22, ∗3 ∗ 3,
∗22 ∗ 22, ∗ ∗ ∗, 22 ∗ ∗, ◦∗, ◦ ∗ ∗

M ∗3× , 2 ∗ ×, ∗22×, 22 ∗ ×, ∗ ∗ ×, ∗ × ×
∗24×, ∗ ∗ ××

T ◦2, ◦3, ◦22, ◦33, ◦◦, ◦24, ◦ ◦ ◦

K 2××, 3××, 22××, ×4
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EPINET = Euclidean Patterns in

Non-Euclidean Tilings

epinet.anu.edu.au

• catalog of hyperbolic h− nets

• each h− net → e(pi)− net

– the geometry induced by the P, D, G retic-

ulation

( e− nets can be knotted)

• e− net → s(ystre)− net

– the canonical barycentric placement of Del-

gado Friedrichs and O’Keeffe
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2D HYPERBOLIC 3D EUCLIDEAN

tilings

o-nets e-nets

symmetrize using
SYSTRE

s-nets

EPINET

crystallographic
orbifolds

h-nets

83



Using H2 to get euclidean structures:

s-nets

• build the h − net from standard DD tiling

theory applied to relevant hyperbolic orbifold

(O).

• the topology of the euclidean wrapping (s −
net) can be determined directly from the h−
net in H2:
–label all 96 ∗246 triangles in the dodecagon (= χ(◦3)

χ(∗246)
).

–place symmetrically distinct vertices in a single do-
main of the orbifold O labelled domain

– find the ∗246 triangles of all neighbouring vertices
(at other ends of edges from distinct vertices)

– determine the label of these triangles as a word in
the ∗246 group

–rewrite as t, τ word

–rewrite t, τ word as a euclidean lattice vector

• this gives the Systre key, that identifies the s-net in
3D.
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Using H2 to get euclidean structures:

e-nets

We are working on a different scheme to get e − nets, that relies

on the mapping of pure rotations (cone points) and translations in

H2 to identical symmetry operators in E3 . . .

Suppose the e − net has orbifold O, on a TPMS whose
Gauss map has (Coxeter) orbifold G, where G is a sym-
metry mutation of O:

• form sub-orbifold O′ of O, with no ∗ or × characters
(by successive zipping of copies of O, giving cones
from corners and translations from cross-caps).

• find the corresponding sub-group of the Gauss map,
G′

• use a quasi-conformal map to transform all points in a
single O′ domain in H2 onto G′, in S2 (á la Thurston’s
numerical maps)

• map the sites in G′ to cartesian positions in E3 using
the Weierstrass-Enneper equations for minimal sur-
faces

• reorient and scale the cartesian positions to match
them with crystal coordinates of an asymmetric do-
main of the surface in the space group corresponding
to O′.

• determine crystal coords of all edges in h-net within a
single O′ domain

• extend to form 3-periodic euclidean structure using
euclidean rotation and translation operations corre-
sponding to cone points, translations in the orbifold
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• A Platonic tiling of H2 with six hyperbolic squares per vertex,
{4,6}.

• The resulting h−net is drawn in the Poincaré disc model of H2,
shaded to reveal the kaleidoscopic symmetry of the tiling.

• Surface reticulation of the {4,6} h − net onto a fragment of the
P three-periodic minimal surface.
The resulting e−net

• its barycentric embedding, the s−net labelled scq1, identical to
pcu.
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h− net → s− net is many-to-one:

• Wrapping of (4.8.8.4.8.8) tilings of H2 to form the pcu net

• Alternative locations of the h−net in H2, both with orbifold sym-
metry ∗4444

• Wrapping onto the P and D surfaces, to give tetragonal and
orthorhombic surface reticulations (e−nets)
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Most symmetric crystallographic sub-group of
optimal hyperbolic orbifold ∗237 has Stellate

orbifold 2223.

This wraps on the P and D to give:

The D embedding relaxes to the low density sphere packing made
of regular icosahedra and octahedra:
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Key references

• A comprehensive list of relevant references can be found on the
epinet website.

• Good general texts are those by Thurston, Coxeter and Stillwell.
• A very easy introduction to manifolds and geometry is Weeks’

book.
• An excellent introduction to, ”Geometry and the Imagination

in Minneapolis”,covering orbifolds, non-euclidean geometry and
topology can be obtained in an abbreviated form from the web.
(Unfortunately, potentially confusing (now outdated) notation is
used for handles and cross-caps in these notes. Handles and
cross-caps are conventionally denoted by ◦ and × respectively;
the Minneapolis notes use • and ◦).

[0, 0, 0, 0, 0, 0, 0]
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