

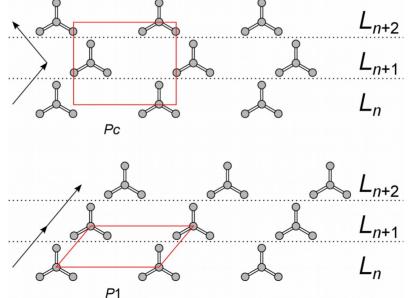
ECM MaThCryst satellite 2019

A short introduction to the OD theory

Berthold Stöger

Polytypism

- <u>Definition</u>: Polytypes are (periodic) structures that are composed of (virtually) identical layers (rods), but differ in the stacking arrangement.
- Ubiquitous in all classes of compounds (minerals, inorganic, metal organic, organic, bio macromolecules).



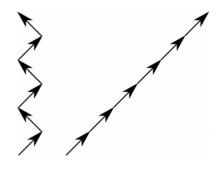
A. Guinier, et al. Nomenclature of polytype structures. Acta. Cryst. A40, 399-404, 1984.

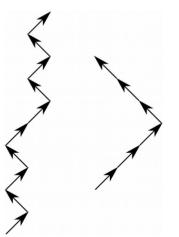
Polytypism: consequences (1)

- Ordered polytypes:
 - Wurtzite vs. sphalerite
 - SiC

. . .

- Sporadic stacking faults:
 - Twinning
 - Overlap of two or more diffraction patterns.
 - Antiphase domains
 - Not easily accessible by diffraction.
 - Elongation of peaks in stacking direction.



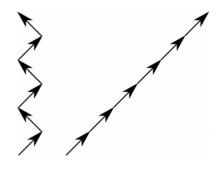


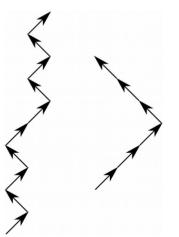
Polytypism: consequences (1)

- Ordered polytypes:
 - Wurtzite vs. sphalerite
 - SiC

. . .

- Sporadic stacking faults:
 - Twinning
 - Overlap of two or more diffraction patterns.
 - Antiphase domains
 - Not easily accessible by diffraction.
 - Elongation of peaks in stacking direction.

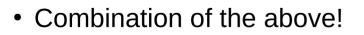


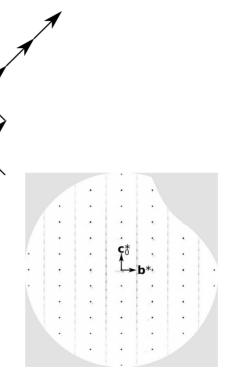


Polytypism: consequences (2)

- Mixing of ordered polytypes
 - Allotwins

- Disordered stackings
 - Streaks in stacking direction



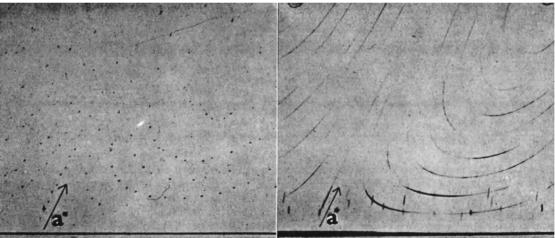


Order/Disorder (OD) theory

- Explanation of the common occurrence of polytypism.
- Prediction of polytypism and twinning.
- Generalization of crystallinity to families of *locally equivalent* structures.
 - Interatomic interactions are local.
- Symmetry theory of families of locally equivalent structures.
- Very general.
 - Applies to an astounding number of polytypic materials.
- OD structures are special kind of polytypes:
 - All OD structures are polytypic (though sometimes disordered).
 - Not all polytypes are OD structures (but experience shows that most are!).

OD theory: a short history

- 1953: Diffraction pattern of wollastonite (CaSiO₃) by J. W. Jeffery
 - Sharp spots (order) and streaks (disorder) in the same diffraction pattern.
 - Recognition of 'virtual' symmetry in the structure.
- 1955: Reason of disorder of wollastonite and Madrell's salt (NaPO₃) by K. Dornberger-Schiff
 - Non-space group symmetry operations of distinct layers lead to local equivalence.



Weissenberg photographs of wollastonite

J. W. Jeffery, *Acta. Cryst.* **6**, 821–404, 1953. K. Dornberger-Schiff et al., *Acta Cryst.* **8**, 752–754, 1955.

OD theory: a short history

- 1956: Coinage of the term "Order-Disorder (OD) structures".
 - Seminal paper.
 - Gives numerous examples of OD structures: Sphere packing, SiC, graphite, $B(OH)_3$, decaborane, chlorites.
 - Explains diffraction effects of disordered OD structures.
- 1961: Fundamentals of the OD theory
 - Partial operations (POs), OD groupoids, OD groupoid families.

K. Dornberger-Schiff, *Acta. Cryst.* **9**, 593–601, 1956. K. Dornberger-Schiff & H. Grell-Niemann, *Acta Cryst.* **14**, 752–754, 1961.

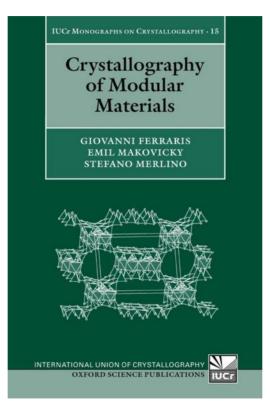
OD theory: a short history

- 1960ies and 1970ies: heyday of the OD school in the GDR (East Berlin).
 - Development of a symmetry theory of locally equivalent structures.
 - Notation for OD groupoid families of one kind of layers.
 - Derivation of the 400 types of (simple) OD groupoid families.
- 1980ies: Generalizations of the theory
 - Notation for OD groupoid families of more that one kind of layers.
 - MDO (maximum degree of order) polytypes
- Late 1980ies: Dying out of the OD school in the GDR.

OD theory: problems

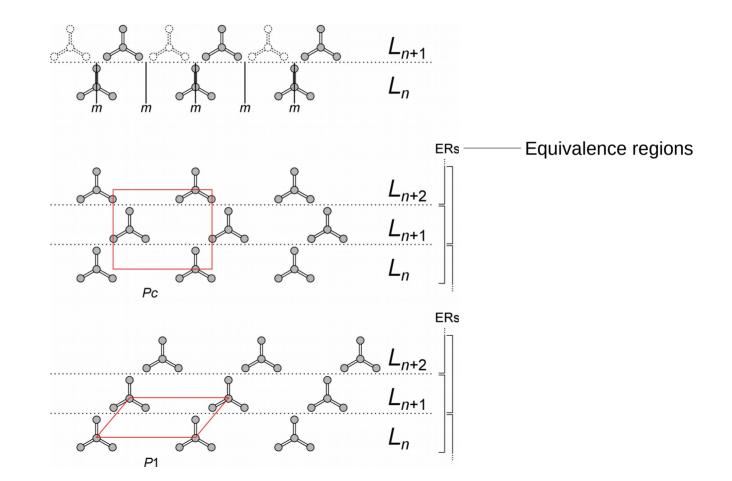
- Developed in isolation.
 - Literature written in German.
 - Literature written in an often impenetrable style.
- Idiosyncratic notations.
 - Looks more complicated than it is.
- Inconsistent use of the notations in the literature.
 - No standardization effort.
- Name clash with order/disorder phase transitions.
- Sudden disappearing of the OD school.
- OD descriptions are not unique.
 - Distinct descriptions leading to the same possible stacking arrangements.
- Theory not yet fully fleshed out.
 - Surprisingly many open questions.

OD Theory: recommended literature



G. Ferraris, E. Makovicky & S. Merlino. "Crystallography of Modular Materials". *IUCr Monographs on Crystallography.* **15**, Oxford University Press, Oxford.

Introductory fictitious example



The vicinity condition (VC)

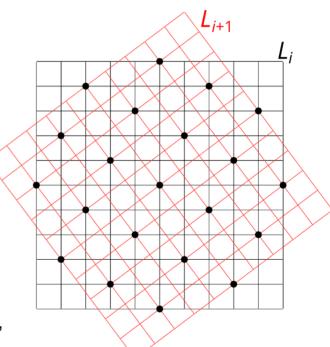
- Basic idea:
 - Interatomic interaction is only local.
 - There is one preferred way of connecting layers / objects.
- A structure fulfills the vicinity condition (VC) if
 - (VCa) it is composed two-dimensionally periodic layers belonging the a finite number M of equivalence classes.
 - (VCβ) adjacent layers possess a common two-dimensional lattice.
 - (VCy) equivalent sides of equivalent layers contact to adjacent layers such that the resulting pairs are equivalent.
- A structure fulfilling the VC is not necessarily periodic!
 - See example from previous slide.
- Ambiguous stacking: proper OD structure
 - All polytypes are locally equivalent up to at least one layer width
- Unambiguous stacking: fully ordered structure.
- Attention: Usually, there is some deviation from VCα and VCγ because some operations are not valid for the whole crystal
 - An OD description is an *idealization*!

Vicinity condition: variants

- Application of the VC is inconsistently used in the literature.
- (VCα) it is composed two-dimensionally periodic layers belonging the a finite number M of equivalence classes.
 - (VC α ') M=1 kinds of layers \rightarrow too strict.
 - (VC α '') M= ∞ kinds of layers \rightarrow violates the idea of well defined building rule.
- (VC β) neighbouring layers possess a common two-dimensional lattice.
 - (VC β ') neighbouring layers possess the same lattice \rightarrow too strict.
 - (VC β ") all polytypes possess a common two-dimensional layer lattice.
 - \rightarrow violates the idea of only local interactions.

Example of aperiodic polytypes

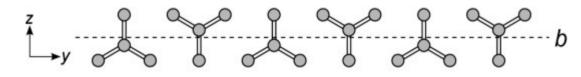
- Rotation of adjacent layers by ±tan-1(¾)
 - Equivalent pairs of layers.
 - Two layers have a common two-dimensional lattice.
 - Structure fulfills the VC β .
- Periodic polytype:
 - Alternating rotation by $+\tan^{-1}(34)$ and $-\tan^{-1}(34)$.
- Non-periodic polytype:
 - Continuous rotation by +tan-1(3/4).
- OD is a *bottom-up* approach:
 - We look at local interaction and construct stackings from there.
 - Despite starting with crystallographic layer symmetry, the stackings need not be crystallographic (i.e. can feature operations of other order than 1, 2, 3, 4 or 6).



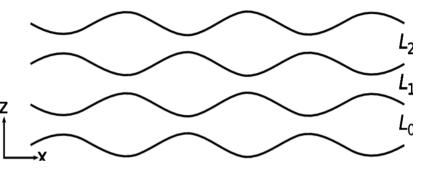
Lattices of two adjacent layers. Dots: common lattice nodes.

OD layers

- OD layers are two-dimensionally periodic of finite thickness
 - No holes (simply connected).
 - No interactions over more than one layer width.
 - The layer interfaces need not be planar.
- OD layers follow purely geometrical considerations.
 - OD layer do not necessarily correspond to chemical layers.
- There are two types of OD layers:
 - Non-polar layers: the two sides of the layers are related by layer symmetry.

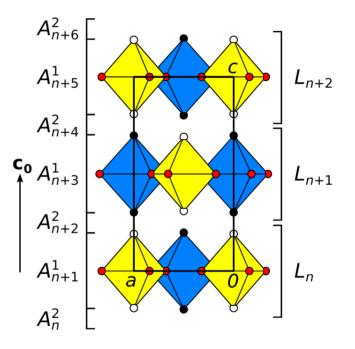


- Polar layers: no symmetry relating the two sides of the layer. The layers possess two non-equivalent sides.
 - Polar layers may appear in two orientations with respect to the stacking direction.



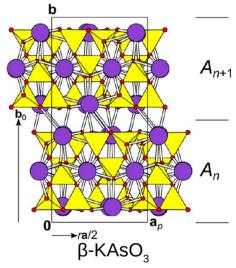
OD layers: coordinate systems

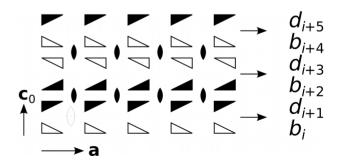
- The coordinate system is chosen such that two basis vectors span the layer lattice.
 - Typically a and b, but there may be reasons for different choices (e.g. existing structures, monoclinic direction in stacking direction, etc.)
- The third basis vector (stacking vector) is called a₀,
 b₀ or c₀.
 - It is usually chosen perpendicular to the layer plane and of the length of one layer packet (smallest *n*-tuple of adjacent layers containing all types of layers).
 - In certain cases the stacking vector is chosen nonperpendicular to the layer plane (see later).



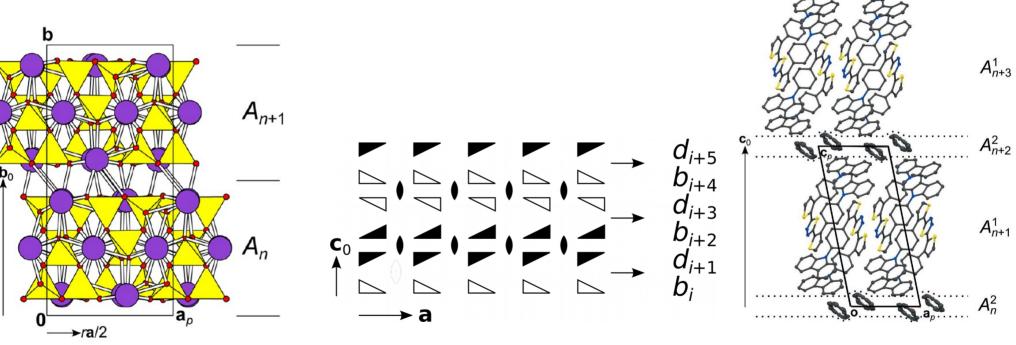
OD layers: symbols

- A general layer is designated as L.
- Layers indexed by a sequential number:
 - L_i connects to L_{i+1} and L_{i-1} .
- If there are *M*>1 kinds of layers, the type of layer may be indicated in the superscript:
 - $L^{0}, L^{1}, L^{2}, \dots$
- Non-polar layers are written as A_i
 - Note the reflection plane of the "A" letter.
- Polar layers are written as *b_i* and *d_i* depending on their orientation with respect to the stacking direction.
 - Note that the letters "b" and "d" are related by reflection





OD layers: symbols



β-KAsO₃

Fictitious example (triangles black on one and white on the other side)

Organic solvate

Layer groups

- The symmetry of a two-dimensionally periodic layer belongs to one of 80 layer group *types*.
- Polar layers:
 - One of 17 types of layer groups.
 - Isomorphic to plane groups.
- Non-polar layers:
 - One of 63 layer group types with operations inverting the stacking direction.

crystal system lattice system	triclinic oblique	monoclinic oblique	${ m monoclinic}$ rectangular	orthorhombic $rectangular$	tetragonal square	trigonal hexagonal	hexagonal hexagonal
polar	<i>P</i> 11(1)	P11(2)	$Pm1(1) \\ Pb1(1) \\ Cm1(1)$	$\begin{array}{cc} Pmm(2) & Pma(2) \\ Pba(2) & Cmm(2) \end{array}$	$\begin{array}{c} P(4) \\ P(4)mm \\ P(4)bm \end{array}$	$P(3) \\ P(3)m1 \\ P(3)1m$	$\begin{array}{c} P(6) \\ P(6)mm \end{array}$
non-polar	P11(ī)	P11(m) P11(a) P11(2/m) P11(2/a)	$\begin{array}{c} P21(1) \\ P2_11(1) \\ C21(1) \\ P2/m1(1) \\ P2_1/m1(1) \\ P2/b1(1) \\ P2_1/b1(1) \\ C2/m1(1) \end{array}$	$\begin{array}{c ccccc} P22(2) & P2_12(2) \\ P2_12_2(2) & C22(2) \\ Pm2(m) & Pm2_1(b) \\ Pb2_1(m) & Pb2(b) \\ Pm2(a) & Pm2_1(n) \\ Pb2_1(a) & Pb2(n) \\ Cm2(m) & Cm2(e) \\ Pmm(m) & Pma(a) \\ Pba(n) & Pma(m) \\ Pba(n) & Pma(m) \\ Pmm(a) & Pma(n) \\ Pba(a) & Pba(m) \\ Pbm(a) & Pmm(n) \\ Cmm(m) & Cmm(e) \end{array}$	$\begin{array}{c} P(\overline{4}) \\ P(4/m) \\ P(4/n) \\ P(4)22 \\ P(4)212 \\ P(\overline{4})2m \\ P(\overline{4})21m \\ P(\overline{4})21m \\ P(\overline{4})m2 \\ P(\overline{4})b2 \\ P(4/m)mm \\ P(4/m)bm \\ P(4/m)bm \\ P(4/m)bm \\ P(4/m)mm \end{array}$	$\begin{array}{c} P(\overline{3}) \\ P(3)12 \\ P(3)21 \\ P(\overline{3})1m \\ P(\overline{3})m1 \end{array}$	$\begin{array}{c} P(\overline{6}) \\ P(6/m) \\ P(6)22 \\ P(\overline{6})m2 \\ P(\overline{6})2m \\ P(\overline{6})2m \\ P(\overline{6}/mmm \end{array}$

Layer group symbols

International Tables: pm2m, p_ancm

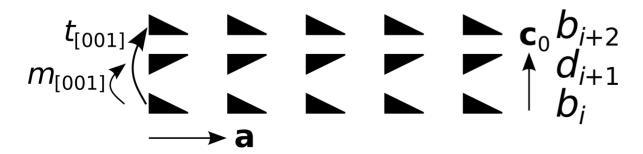
Lower case Bravais symbol: two-dimensional lattice Direction of missing translation given in subscript of Bravais symbol

• OD-school: *Pm2(m)*, *P(n)cm*

Upper case Bravais symbol: three-dimensional object. Direction of missing translation indicated by parenthesis.

Partial Operations (POs)

- Two layers of the same kind are mapped by partial operations (POs).
- A PO is based on a motion of Euclidean space $\mathbb E.$
 - Identity, inversion, rotation, reflection, higher roto-inversion, screw rotations and glide reflections can all form POs.
- A PO has a source and a target layer.
 - In the OD literature, POs are often written as $_{i,j}a$, $_{i,j}b$, where *i* and *j* are the source and target layers.
 - Note that i and j are reversed with respect to the notation of the last session.
- A PO can be seen as the restriction of a motion to the space occupied by the source layer.
 - \rightarrow A partial function from the space occupied be the source into the space occupied by the target layer.
- For each layer L_i there is the identity PO $_{i,i}$ 1
- For each PO _{i,j}a exists the inverse PO _{j,j}a-1
- Two layers are always mapped by an infinity of POs, whereby we can choose one representative
 See previous session.



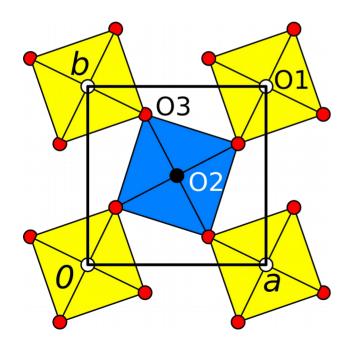
Identifying OD layers

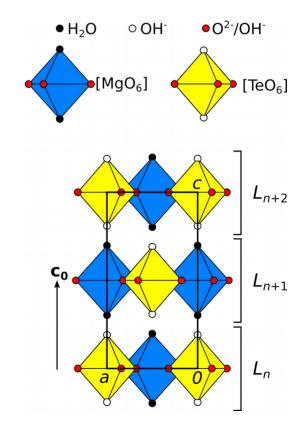
- Search for POs that explain the observed disorder phenomenon:
 - Twinning: POs with same linear part as twin operation.
 - Phantom atoms: POs that map heavy atoms on the ghost atoms.
- The POs may map a layer onto itself or relate adjacent layers.
- The layer interfaces need not be planar.
- Atoms may be located on the layer interfaces.
 - These atoms belong to both adjacent layers.
- The layer choice is not necessarily unique.
 - The chosen description should be as clear as possible.
- Aim for the *simplest* layer choice that explains all the observed effects.

H. Grell: "How to choose OD layers", *Acta Cryst.* A**40**, 95–99 (1984).

OD vs. non-OD: MgTeO₈H₈

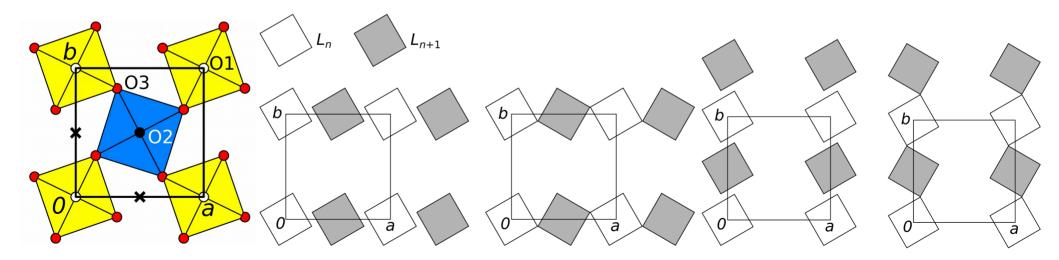
- Tetragonal [P(4/m)] layers with composition $Mg(H_2O)_2[TeO_2(OH)_4]$.
- H atoms predicted by bond-valence-sums.





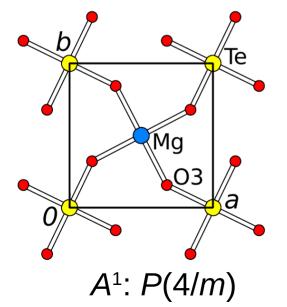
OD vs. non-OD: MgTeO₈H₈

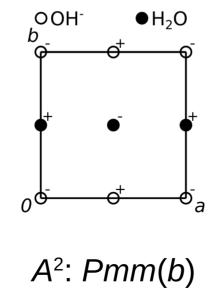
- From one layer to the next:
- Two ways of placing origin \rightarrow Mg/Te exchange.
- Two ways of octahedron orientation \rightarrow Orientation inversion.
- Non-OD, since pairs of adjacent layers are non-equivalent.

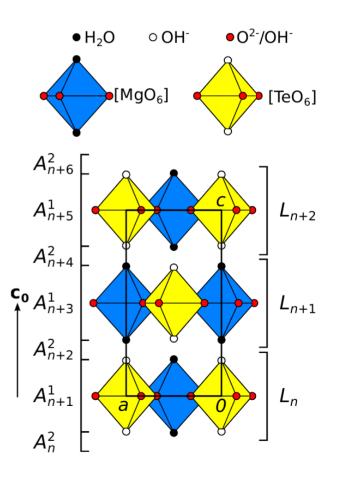


OD vs. non-OD: MgTeO₈H₈

- Two kinds of layers \rightarrow OD
- OD interpretation splits the observed disorder in two components:
 - Disorder owing to the hydrogen-bonding
 - Disorder owing to the symmetry of the octahedra
- OD is a *empirical* approach

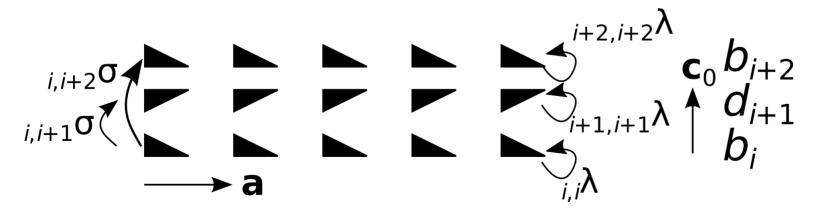






Classification of POs

- λ -POs (λ stands for "layer")
 - POs that map a layer L_i onto itself:
 - Also written as $_{i,i}\lambda$
 - Correspond to *local operations* in the last session.
 - The λ -POs of a given layer form a *group* that is *isomorphic* to the layer group.
 - From now on we will not differentiate between layer groups and groups of λ -POs.
- σ -POs (σ stands for "space")
 - POs that map a layer L_i onto a different layer L_j , $i \neq j$
 - Also written as $_{i,j}\sigma$



Classification of POs

• τ-POs

- Keep the orientation with respect to the stacking direction.
- For example stacking direction [001]:
 - The matrix representation of the linear part must have the form:

$$\begin{pmatrix} w_{11} & w_{12} & 0\\ w_{21} & w_{22} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

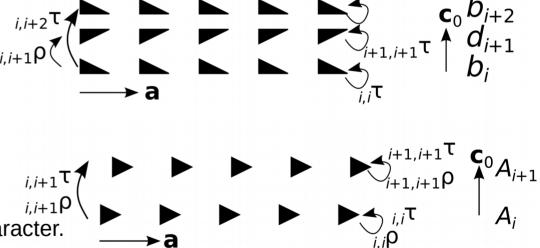
- ρ-POs (ρ stands for "reverse")
 - Invert the orientation with respect to the stacking direction
 - For example stacking direction [001]:
 - The matrix representation of the linear part must have the form:

$$\begin{pmatrix} w_{11} & w_{12} & 0\\ w_{21} & w_{22} & 0\\ 0 & 0 & \overline{1} \end{pmatrix}$$

Classification of POs

- Equivalent non-polar layers are always related by τ and ρ -POs.
 - The $\lambda\text{-POs}$ of a non-polar layer comprise $\lambda\text{-}\tau\text{-POs}$ and $\lambda\text{-}\rho\text{-POs}.$
- Equivalent polar layers are related by τ or ρ -POs (but never both).
 - There are only λ - τ -POs in polar layers.
- Composition of τ and $\rho\text{-POs}$

au



- Inversion of an operation retains τ and ρ -character.
- Conjugation (with other POs) retains τ and ρ -character.

Notation for λ -POs

- λ -POs can only be operations that appear in layer groups.
- Therefore, we can use standard Hermann-Mauguin notation.
- Intrinsic translation of glides reflections and screw rotations only parallel to the layer plane.
- Direction of the operation only parallel or perpendicular to layer plane.
- Higher order (n>2) operations only with direction perpendicular to layer plane.

	λ - τ -POs	λ - ρ -POs
no direction	1, t	1
direction in layer	m,a,b,c	$2,2_1$
stacking direction	2, 3, 4, 6	$m, a, b, c, n, \overline{3}, \overline{4}, \overline{6}$

Notation for σ -POs

- In POs relating different layers, non-spacegroup intrinsic translations can appear for screw rotations and glide reflections.
- Generalization of the Hermann-Mauguin symbols.
- Unfortunately, rather idiosyncratic and inconsistent:
 - 2_r , 2_s : twofold rotation with intrinsic translation r/2, s/2 of the shortest lattice vector.
 - 2_2 , 2_4 , 2_6 , ...: twofold screw rotation mapping layer L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ...
 - 3_3 , 3_6 , 3_9 , ...: threefold screw rotation mapping layer L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ...
 - 4_4 , 4_8 , 4_{12} , ...: fourfold screw rotation mapping layer L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ...
 - 6_6 , 6_{12} , 6_{13} , ...: threefold screw rotation mapping layer L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ...
 - $n_{r,s}$: glide reflection with intrinsic translation
 - Direction [100]: rb/2+rc/2
 - Direction [010]: rc/2+ra/2
 - Direction [001]: ra/2+rb/2
 - Except for hexagonal layers, of course.
 - a_r , b_r , c_r : shorthand for $n_{0,s}$ or $n_{r,0}$ with intrinsic translation only in [100], [010] or [001] direction.
 - c_2 , c_4 , c_6 , ...: glide reflection mapping L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ... without intrinsic translation in the layer plane.
 - a_2 , a_4 , a_6 , ...: glide reflection mapping L_i onto L_{i+1} , L_{i+2} , L_{i+3} , ... without intrinsic translation in the layer plane.
 - b₂, b₄, b₆, ...: glide reflection mapping L_i onto L_{i+1}, L_{i+2}, L_{i+3}, ... without intrinsic translation in the layer plane.

Notation for σ -POs

	σ - τ -POs	σ - ρ -POs
no direction	t	$\overline{1}$
direction in layer	$n_{r,2}, c_2, $ etc.	$2, 2_r$
stacking direction	$2_2, 3_3, 4_4, 6_6, $ etc.	$m, n_{r,s}, \overline{3}, \overline{4}, \overline{6}$

Continuation

- Two POs $_{i,j}a$ and $_{k,j}b$ are said to be a continuation if they are based on the same motion.
- In symbols: $_{i,j}a \leftrightarrow _{k,l}b$
- Extreme case: a motion has continuations for all layers
 - \rightarrow the motion is a *total operation* of the OD structure.
- Reverse continuations are continuations of POs that map L_i on L_j and L_j on L_i $(i \neq j)$:
 - $a_{i,j} a \leftrightarrow b_{j,i} b$
 - A reverse continuation must be a σ - ρ -PO.
 - A reverse continuation represents a symmetry operation of the (L_i, L_j) pair of layers.
 - Pairs of layers that do not have a reverse continuation are polar.
 - These pairs can appear in two orientations with respect to the stacking direction.

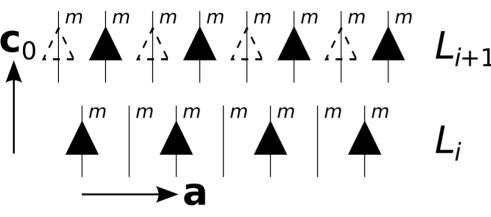
NFZ Relationship

- To determine the number of stacking possibilities, we use the NFZ relationship.
- It is based on one known (*L_i*, *L_{i+1}*) pair of layers and gives the number of ways of placing *L_{i+1}* such that geometrically equivalent pairs of layers are obtained.
- Coset decomposition of the group of λ - τ -POs valid for both layers in the group of λ - τ -POs of L_i .

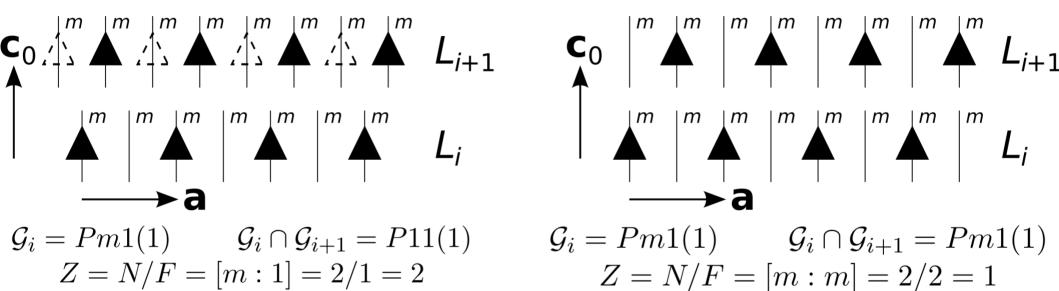
Group of
$$\lambda$$
- τ -POs of L_i
(extended to global operations)

$$Z = N/F = [\mathcal{G}_i : \mathcal{G}_i \cap \mathcal{G}_{i+1}] = |\mathcal{G}_i/\mathcal{T}|/|(\mathcal{G}_i \cap \mathcal{G}_{i+1})/\mathcal{T}|$$
Group of λ - τ -POs of L_i that
have continuations in L_{i+1}
(extended to global operations)

NFZ Relationship



Z = N/F = [m:1] = 2/1 = 2



NFZ relationship

- One exception:
 - If there are σ -p-POs and no reverse continuations.
 - Application of the inverse of a σ - ρ -POs leads to a new lair pair with same L_i .
 - The two orientations of L_{i+1} are derived by double application of the motion of the inverse of a σ -p-PO
 - The number of stacking possibilities is doubled.
 - The NFZ relationship then reads as Z=2N/F.

$$\mathcal{G}_{i} = P11(1) \qquad \mathcal{G}_{i} \cap \mathcal{G}_{i+1} = P11(1) \qquad \mathcal{G}_{i} = P11(1) \qquad \mathcal{G}_{i} \cap \mathcal{G}_{i+1} = P11(1) \\ Z = 2N/F = 2[1:1] = 2 \cdot 1/1 = 2 \qquad Z = N/F = [1:1] = 1/1 = 1$$

OD family

- Given an OD structure, all alternative stacking arrangements with equivalent pairs of layers form an *OD family* of structures.
- Examples:
 - Graphite ordered polytypes, twins, disordered stackings...
 - SiC ordered polytypes, twins, disordered stackings...

Category of an OD family

- Owing to the (VCy), for an OD family of layers of M kinds, only certain successions of τ and ρ -POs are possible.
- These define the category of an OD family.
- There are a finite number of categories, which simplifies the analysis of OD families in general, as there are only a finite number of cases to consider.
- For *M*=1 layers, there are 3 categories:
 - Category I:
 - ...AAAA...
 - Layers are non-polar, $\sigma\text{-}\tau\text{-}$ and $\sigma\text{-}\rho\text{-}POs.$
 - Category II:
 - ...bbbb...
 - Layers are polar, only σ - τ -POs.
 - Category III:
 - ...bdbd...
 - Layers are polar, only $\sigma\text{-}\tau\text{-}$ and $\sigma\text{-}\rho\text{-}POs.$
 - Two kinds of layer contacts!

	No. non-polar	No. polar	σ - ρ -POs	Types of contacts
Category I	1	0	\checkmark	1
Category II	0	1	X	1
Category III	0	1	\checkmark	2

Category of an OD family

- For *M*>1 layers there are four categories
- E.g. for layers of *M*=4 kinds:
- Category I:
 - $\ \dots A^{1}b^{2}b^{3}b^{4}d^{4}d^{3}d^{2}A^{1}b^{2}b^{3}b^{4}d^{4}d^{3}d^{2}\dots$
- Category II:
 - $\dots b^{1}b^{2}b^{3}b^{4}b^{1}b^{2}b^{3}b^{4}\dots$
- Category III:
 - $\dots b^1 b^2 b^3 b^4 d^4 d^3 d^2 d^1 b^1 b^2 b^3 b^4 d^4 d^3 d^2 d^1 \dots$
- Category IV:
 - $\dots A^{1}b^{2}b^{3}A^{4}d^{3}d^{2}A^{1}b^{2}b^{3}A^{4}d^{3}d^{2}\dots$

	No. non-polar	No. polar	$\sigma\text{-}\rho\text{-}\mathrm{POs}$	Types of contacts
Category I	1	M-1	\checkmark	M
Category II	0	M	×	M
Category III	0	M	\checkmark	M+1
Category IV	2	M-2	\checkmark	M-1

Composition of POs

- The composition of two POs is defined if and only if the target of the first is the source of the second.
- The resulting PO has the source of the first and the target of the second PO:
 - $i_{i,k} c = j_{i,k} b \circ_{i,j} a$
- Composition of POs can be conveniently written using diagrams:

$${}_{k,l}{}^{c} \circ {}_{j,k}{}^{b} \circ {}_{i,j}{}^{a} \longrightarrow i \xrightarrow{a} j \xrightarrow{b} k \xrightarrow{c} l$$

• A diagram is said to commute if all paths between the same nodes are equal

Groupoids

- A groupoid ${\boldsymbol{\mathsf{G}}}$ is composed of
 - A set of objects obj(G) (=Layers)
 - A set or morphisms mor(G) (=POs)
 - Two mappings src,trg: $mor(G) \rightarrow obj(G)$
 - A composition \circ defined for a,b \in ob(G) if and only if src(b)=trg(a)

Groupoid axioms

Associativity Neutral element Inverse

$$({}_{i,k}c \circ {}_{j,k}b) \circ {}_{i,j}a = {}_{i,k}c \circ ({}_{j,k}b \circ {}_{i,j}a)$$
$${}_{j,j}1 \circ {}_{i,j}a = {}_{i,j}a \circ {}_{i,i}1 = {}_{i,j}a$$
$${}_{j,i}a^{-1} \circ {}_{i,j}a = {}_{i,i}1$$
$${}_{i,j}a \circ {}_{j,i}a^{-1} = {}_{j,j}1$$

H. Brandt. "Über eine Verallgemeinerung des Gruppenbegriffes". *Math. Ann.* **96**, 360–366 (1927). C. Ehresmann. "Gattungen von Lokalen Strukturen". *Jahresber. Deutsch. Math.-Verein.*, **60**, 49–77 (1957).

OD groupoids

- The composition of the POs of an OD structure forms an OD groupoid.
- Proof of groupoid properties are left as an exercise.
- Every polytype, twin, disordered stacking, etc. has its unique OD groupoid.
- An OD groupoid is composed of *M* connected components, where *M* corresponds to the number of types of layers.

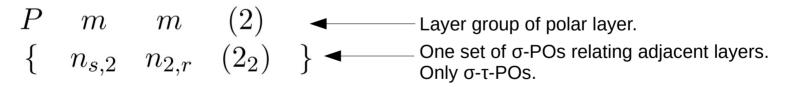
OD groupoid families

- The infinity of space groups are categorized into 230 crystallographic types of space groups.
 - Space groups abstract from:
 - Orientation
 - Metrics
- In analogy: the OD groupoids are categorized into OD groupoid families.
 - OD groupoid families abstract from:
 - Orientation
 - Metrics
 - Stacking
 - All OD groupoids that are built according to the same symmetry principle belong to the same OD groupoid family.
 - There is an infinity of OD groupoid families.
 - For layers of one kind with all the same lattice, there are 400 OD groupoid families.
- All OD groupoids of the same OD groupoid family are of the same category.
- An OD groupoid family has a *point group*:
 - The group generated by the linear parts of all POs.
 - Need not be a crystallographic point group (see tan-13/4 example)!

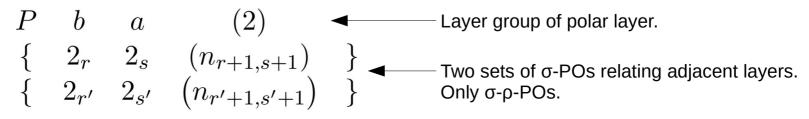
- Depends on the number *M* of kinds of layers and the category of the OD groupoid family.
- *M*=1, Category I (...AAA...)

Pma(m)Layer group of non-polar layer.
$$\{ 2_{-1+r}/n_{s,2}, 2_s/n_{2,-1+r}, (2_2/n_{r,s}) \}$$
One set of σ-POs relating adjacent layers.
Usually contains σ-τ-POs and σ-ρ-POs.

• M=2, Category II (...bbb...)



• M=3, Category III (...bdbdbd...)



- For layers of *M*>1 kinds:
 - Origin-relation of layers of different kind given by pair of parameters [r,s]
 - Corresponds to a shift in the layer plane of *r***a**+s**b**, *r***b**+s**c** or *r***c**+s**a**.

Category I M=2 (... $A^{1}b^{2}d^{2}A^{1}b^{2}d^{2}...$):

Category II *M*=2 (...b¹b²b¹b²...):

- For layers of *M*>1 kinds:
 - Origin-relation of layers of different kind given by pair of parameters [r,s]
 - Corresponds to a shift in the layer plane of *r***a**+s**b**, *r***b**+s**c** or *r***c**+s**a**.

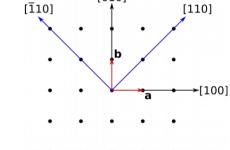
Category III M=2 (...b¹b²d²d¹b¹b²d²d¹...):

Category IV M=3 (... $A^{1}b^{2}A^{1}d^{2}A^{1}b^{2}A^{1}d^{m}...$):

$$P m m (m) [r,s]$$
 $P m m (2) [r',s']$ $P 2 2 (2)$

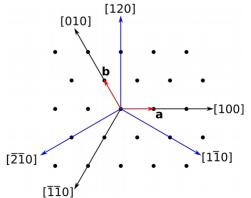
- For tetragonal, trigonal and hexagonal OD families, five- or seven-placed symbols may be necessary.
- Reason: Directions that are equivalent in space groups e.g. <100> may not be equivalent.
- Tetragonal: symbols given in [100], [010], [001], [110], $\overline{[110]}$ direction.

$$\begin{cases} P \quad 2_1/b \quad 1 \quad (1) \quad 1 \quad 1 \\ - \quad - \quad \left(\begin{array}{c} 4_4^+ \\ \overline{4}^+ \end{array}\right) \quad 2_{r+s} \quad - \\ n_{1+r-s,2} \quad - \end{cases} \end{cases}$$



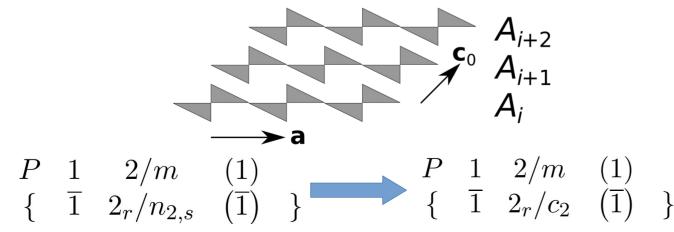
[010]

• Hexagonal: symbols given in [100], [010], $[\overline{11}0]$, [001], [120], $[\overline{21}0]$, $[1\overline{1}0]$ directions.



Metric parameters

- Metric parameters of OD groupoids:
 - Lattice metrics of one layer (a, b, γ) .
 - Layer widths.
 - Metric parameters of σ -POs (r, s).
 - Origin shifts of adjacent layers (*r*, *s*).
- Parameters *r*, *s* may be fixed by atoms located at the layer interface.
- In triclinic and monoclinic/rectangular OD groupoids:
 - For convenience, stacking vectors \mathbf{a}_0 , \mathbf{b}_0 or \mathbf{c}_0 may be chosen not perpendicular to the layer planes.
 - Some metric parameters of σ -POs become 0. In return, angle of the stacking vector to the layer plane must be specified.



Metric parameters

• OD groupoids can adopt special metric parameters for which the number of stacking possibilities change:

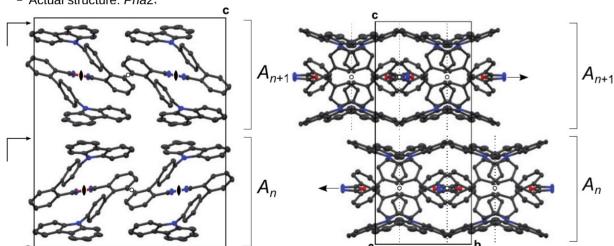
$$P \qquad m \qquad a \qquad (m) \\ \{ 2_{-1+r}/n_{s,2} \quad 2_s/n_{2,-1+r} \quad (2_2/n_{r,s}) \}$$

1. general: Z = [Pma(2) : P11(1)] = 4

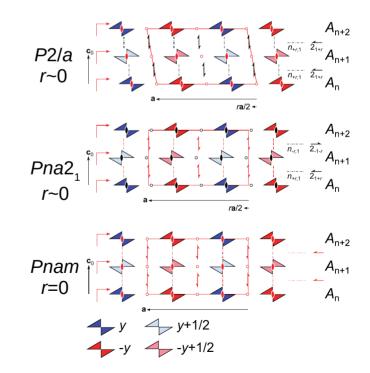
- 2. $r \in \mathbb{Z}$: Z = [Pma(2) : Pm1(1)] = 2
- 3. $s \in \mathbb{Z}$: Z = [Pma(2) : P1a(1)] = 2
- 4. $r, s \in \mathbb{Z}$: Z = [Pma(2) : Pma(2)] = 1

Metric parameters

- The metric parameters can act as a measure of deviation from symmetry.
- Example:
 - Organic molecule
 - s=1, r~0.
 - For r=0: fully ordered, Pnam
 - Actual structure: Pna2,

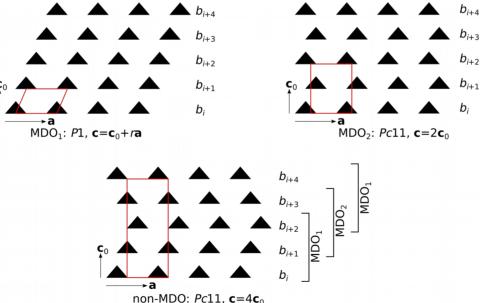


 $\begin{array}{cccc} P & 1 & 2/a & (1) \\ \{ & 2_{r-1}/n_{s,2} & - & (2_2/n_{r,s}) \end{array} \} \end{array}$



MDO polytypes

- Polytypes that can not be decomposed into simpler polytype are said to be of a maximum degree of order (MDO).
- Usually in an MDO polytype not only all pairs, but also triples, quadruples, *n*-tuples of consecutive layers are equivalent.
- For any OD family, there is a finite number of MDO polytypes.
 - The symmetry of the MDO polytypes depends on the OD groupoid family and the metric parameters.



K. Dornbeger-Schiff. Geometrical Properties of MDO Polytypes and Procedures for their Derivation. Acta. Cryst. A38, 483-491, 1982.

MDO polytypes

- All stackings can be decomposed into fragments of MDO polytypes:
 - A non-MDO polytype is a ordered succession of MDO fragments.

- ...

- A twin can be an MDO polytype with fragments of other MDO polytypes at the twin boundary.
- A disordered stacking can be described as an (weighted) overlay of MDO polytypes.

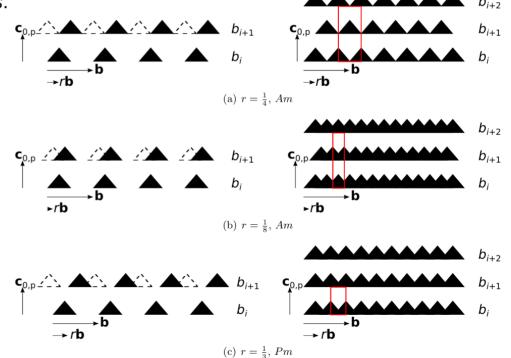
• The MDO polytypes can be considered as the "alphabet" of an OD family.

- In many cases if a $L_{i}L_{i+1}L_{i+2}$ triple is preferred during crystal growth, an MDO polytype is formed
 - In most cases (though not all) ordered bulk polytypes are of the MDO kind!

K. Dornbeger-Schiff. Geometrical Properties of MDO Polytypes and Procedures for their Derivation. Acta. Cryst. A38, 483-491, 1982.

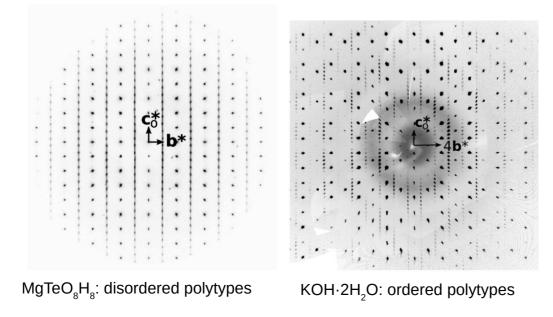
Family structure

- The family structure is an equal overlap of all stacking possibilities.
- The symmetry of the family structure is obtained by extending all POs of a member to global operations and using these as group generator.
- The symmetry depends on the metric parameters *r*,*s*.
 - For irrational *r* or *s*, the symmetry is *not* a spacegroup!



Family structure

- Reflections corresponding the family structure (=family reflections) are always sharp.
 - These are realized for the whole stacking.
- Reflections of individual polytypes (=characteristic reflections) are sharp or diffuse.
 - Depends on the degree of order of the polytype.
 - Hence the name "order-disorder".



Family structure

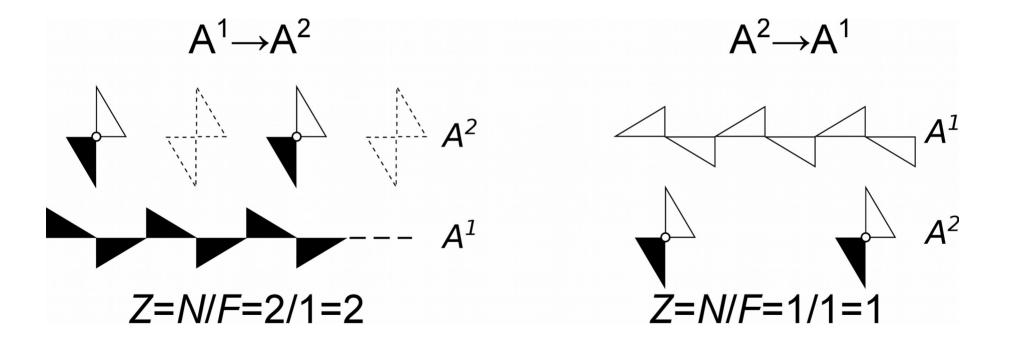
- Coset decomposition of point group of polytype in point group of family structure
 - Possible orientation domain states (twin individuals).
- Coset decomposition of space group of polytype in space group of family structure
 - Possible orientation and translation domain states (twin individuals and antiphase domains).

Maximum equivalence regions

- By definition (VC) pairs $L_i L_{i+1}$ of adjacent layers are equivalent in all members of an OD family.
- In some OD families also L_iL_{i+1}L_{i+2} triples are geometrically equivalent in all members of the OD family.
- The largest *n*-tuples $L_i L_{i+1} \dots L_{i+n-1}$ of consecutive layers layers that are geometrically equivalent in all members of an OD family are called maximum equivalence regions (MERs).
- If parts of an OD structure are part of more than 2 MERs, the choice of OD layers is ambiguous.

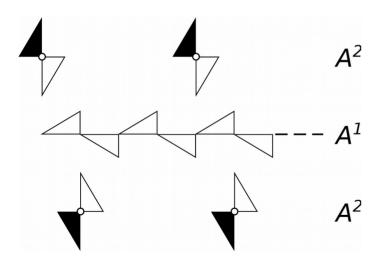
H. Grell: "How to choose OD layers", Acta Cryst. A40, 95–99 (1984).

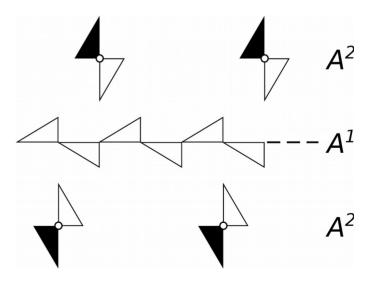
$K_2HAsO_4 \cdot 2,5H_2O$: layer pairs



$K_2HAsO_4 \cdot 2,5H_2O$: triples, etc.

- one kind of A1A2A1 triple (follows directly from NFZ)
- one kind of A²A¹A² triple
- one kind of $A^{1}A^{2}A^{1}A^{2}A^{1}$ quintupel
- two kinds of hexuples



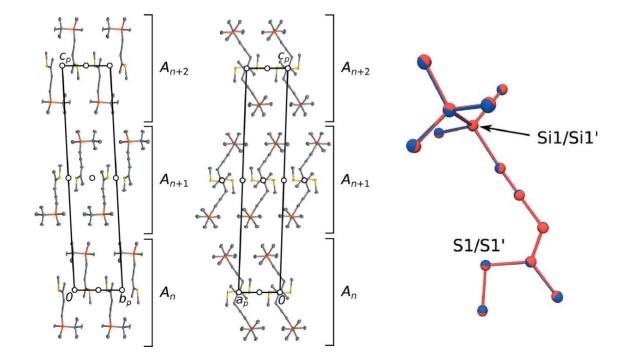


Desymmetrization

- An OD description is usually an *idealized* description.
- In actual polytypes, some POs will only be realized approximately.
- Deviation from ideal symmetry: desymmetrization.
- Seemingly paradox:
 - Disorder \rightarrow higher symmetry (extreme: family structure)
 - Order \rightarrow lower symmetry.
- Desymmetrization is one way of growing ordered polytypes:
 - The polytypes are not perfectly locally equivalent.
- For an OD description to be valid, desymmetrization should be reasonably small.
 - Excessive desymmetrization: These are not (OD) polytypes anymore.

Desymmetrization

- TBDMS-capped (3Z)-4-(methylthio)-3-penten-1-yne
 - OD structure with negligible desymmetrization



Desymmetrization

- TIPS-capped (3Z)-4-(methylthio)-3-penten-1-yne
 - OD structure with strong desymmetrization if described as composed of one kind of layer
 - Decompose into two layers and the desymmetrization vanishes

