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A short introduction to the OD theory
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Polytypism
● Definition: Polytypes are (periodic) structures that are composed of (virtually) identical 

layers (rods), but differ in the stacking arrangement.

● Ubiquitous in all classes of compounds (minerals, inorganic, metal organic, organic, bio 
macromolecules).

A. Guinier, et al. Nomenclature of polytype structures. Acta. Cryst. A40, 399–404, 1984.



  

Polytypism: consequences (1)
● Ordered polytypes:

– Wurtzite vs. sphalerite
– SiC
– …

● Sporadic stacking faults:
– Twinning

● Overlap of two or more diffraction patterns.

– Antiphase domains
● Not easily accessible by diffraction.
● Elongation of peaks in stacking direction.
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Polytypism: consequences (2)
● Mixing of ordered polytypes

– Allotwins

● Disordered stackings
– Streaks in stacking direction

● Combination of the above!



  

Order/Disorder (OD) theory
● Explanation of the common occurrence of polytypism.
● Prediction of polytypism and twinning.
● Generalization of crystallinity to families of locally equivalent structures.

– Interatomic interactions are local.

● Symmetry theory of families of locally equivalent structures.
● Very general.

– Applies to an astounding number of polytypic materials.

● OD structures are special kind of polytypes:
– All OD structures are polytypic (though sometimes disordered).
– Not all polytypes are OD structures (but experience shows that most are!).



  

OD theory: a short history
● 1953: Diffraction pattern of wollastonite (CaSiO3) by J. W. Jeffery

– Sharp spots (order) and streaks (disorder) in the same diffraction pattern.
– Recognition of ‘virtual’ symmetry in the structure.

● 1955: Reason of disorder of wollastonite and Madrell’s salt (NaPO3) by K. Dornberger-Schiff
– Non-space group symmetry operations of distinct layers lead to local equivalence. 

J. W. Jeffery, Acta. Cryst. 6, 821–404, 1953.
K. Dornberger-Schiff et al., Acta Cryst. 8, 752–754, 1955.

Weissenberg photographs of wollastonite



  

OD theory: a short history
● 1956: Coinage of the term “Order-Disorder (OD) structures”.

– Seminal paper.

– Gives numerous examples of OD structures: Sphere packing, SiC, graphite, B(OH)3, 
decaborane, chlorites.

– Explains diffraction effects of disordered OD structures.

● 1961: Fundamentals of the OD theory
– Partial operations (POs), OD groupoids, OD groupoid families.

K. Dornberger-Schiff, Acta. Cryst. 9, 593–601, 1956.
K. Dornberger-Schiff & H. Grell-Niemann, Acta Cryst. 14,  752–754, 1961.



  

OD theory: a short history
● 1960ies and 1970ies: heyday of the OD school in the GDR (East Berlin).

– Development of a symmetry theory of locally equivalent structures.
– Notation for OD groupoid families of one kind of layers.
– Derivation of the 400 types of (simple) OD groupoid families.

● 1980ies: Generalizations of the theory
– Notation for OD groupoid families of more that one kind of layers.
– MDO (maximum degree of order) polytypes

● Late 1980ies: Dying out of the OD school in the GDR. 



  

OD theory: problems
● Developed in isolation.

– Literature written in German.
– Literature written in an often impenetrable style.

● Idiosyncratic notations.
– Looks more complicated than it is.

● Inconsistent use of the notations in the literature.
– No standardization effort.

● Name clash with order/disorder phase transitions.
● Sudden disappearing of the OD school.
● OD descriptions are not unique.

– Distinct descriptions leading to the same possible stacking arrangements.

● Theory not yet fully fleshed out.
– Surprisingly many open questions.



  

OD Theory: recommended literature

G. Ferraris, E. Makovicky & S. Merlino. “Crystallography of Modular Materials”. IUCr Monographs 
on Crystallography. 15, Oxford University Press, Oxford.



  

Introductory fictitious example

Equivalence regions



  

The vicinity condition (VC)
● Basic idea:

– Interatomic interaction is only local.
– There is one preferred way of connecting layers / objects. 

● A structure fulfills the vicinity condition (VC) if
– (VCα) it is composed two-dimensionally periodic layers belonging the a finite number M of equivalence classes.
– (VCβ) adjacent layers possess a common two-dimensional lattice.
– (VCγ) equivalent sides of equivalent layers contact to adjacent layers such that the resulting pairs are equivalent.

● A structure fulfilling the VC is not necessarily periodic!
– See example from previous slide.

● Ambiguous stacking: proper OD structure
– All polytypes are locally equivalent up to at least one layer width

● Unambiguous stacking: fully ordered structure.

● Attention: Usually, there is some deviation from VCα and VCγ because some operations are not valid for the whole crystal
– An OD description is an idealization!



  

Vicinity condition: variants
● Application of the VC is inconsistently used in the literature.
● (VCα) it is composed two-dimensionally periodic layers belonging the a finite 

number M of equivalence classes.
– (VCα’) M=1 kinds of layers → too strict.
– (VCα’’) M=∞ kinds of layers → violates the idea of well defined building rule.

● (VCβ) neighbouring layers possess a common two-dimensional lattice.
– (VCβ’) neighbouring layers possess the same lattice → too strict.
– (VCβ’’) all polytypes possess a common two-dimensional layer lattice.

→ violates the idea of only local interactions.



  

Example of aperiodic polytypes
● Rotation of adjacent layers by ±tan-1(¾)

– Equivalent pairs of layers.
– Two layers have a common two-dimensional lattice.
– Structure fulfills the VCβ.

● Periodic polytype:
– Alternating rotation by +tan-1(¾) and -tan-1(¾).

● Non-periodic polytype:
– Continuous rotation by +tan-1(¾).

● OD is a bottom-up approach:
– We look at local interaction and construct stackings from there.
– Despite starting with crystallographic layer symmetry, the stackings need 

not be crystallographic (i.e. can feature operations of other order than 1, 2, 
3, 4 or 6).

Lattices of two adjacent layers.
Dots: common lattice nodes.



  

OD layers
● OD layers are two-dimensionally periodic of finite thickness

– No holes (simply connected).
– No interactions over more than one layer width.
– The layer interfaces need not be planar. 

● OD layers follow purely geometrical considerations.
– OD layer do not necessarily correspond to chemical layers.

● There are two types of OD layers:
– Non-polar layers: the two sides of the layers are related by layer symmetry.

– Polar layers: no symmetry relating the two sides of the layer. The layers possess two non-equivalent sides.
● Polar layers may appear in two orientations with respect to the stacking direction. 



  

OD layers: coordinate systems
● The coordinate system is chosen such that two 

basis vectors span the layer lattice.
– Typically a and b, but there may be reasons for different 

choices (e.g. existing structures, monoclinic direction in 
stacking direction, etc.)

● The third basis vector (stacking vector) is called a0, 
b0 or c0.
– It is usually chosen perpendicular to the layer plane and 

of the length of one layer packet (smallest n-tuple of 
adjacent layers containing all types of layers).

– In certain cases the stacking vector is chosen non-
perpendicular to the layer plane (see later).



  

OD layers: symbols
● A general layer is designated as L.
● Layers indexed by a sequential number:

– Li connects to Li+1 and Li-1.

● If there are M>1 kinds of layers, the type of layer may 
be indicated in the superscript:
– L0, L1, L2, … 

● Non-polar layers are written as Ai

– Note the reflection plane of the “A” letter.

● Polar layers are written as bi and di depending on their 
orientation with respect to the stacking direction.
– Note that the letters “b” and “d” are related by reflection

β-KAsO
3



  

OD layers: symbols

β-KAsO
3

Fictitious example
(triangles black on one and 

white on the other side)

Organic solvate



  

Layer groups
● The symmetry of a two-dimensionally periodic layer belongs to one of 80 layer group types.
● Polar layers:

– One of 17 types of layer groups.
– Isomorphic to plane groups.

● Non-polar layers:
– One of 63 layer group types with operations inverting the stacking direction.



  

Layer group symbols
● International Tables: pm2m, pancm

● OD-school: Pm2(m), P(n)cm

Lower case Bravais symbol:
two-dimensional lattice

Direction of missing translation
given in subscript of Bravais symbol

Upper case Bravais symbol:
three-dimensional object.

Direction of missing translation
indicated by parenthesis.



  

Partial Operations (POs)
● Two layers of the same kind are mapped by partial operations (POs).
● A PO is based on a motion of Euclidean space .𝔼

– Identity, inversion, rotation, reflection, higher roto-inversion, screw rotations and glide reflections can all form POs.

● A PO has a source and a target layer.
– In the OD literature, POs are often written as i,ja, i,jb, where i and j are the source and target layers.

– Note that i and j are reversed with respect to the notation of the last session.

● A PO can be seen as the restriction of a motion to the space occupied by the source layer.
– → A partial function from the space occupied be the source into the space occupied by the target layer.

● For each layer Li there is the identity PO i,i1

● For each PO i,ja exists the inverse PO j,ia-1
 

● Two layers are always mapped by an infinity of POs, whereby we can choose one representative
– See previous session.



  

Identifying OD layers
● Search for POs that explain the observed disorder phenomenon:

– Twinning: POs with same linear part as twin operation.
– Phantom atoms: POs that map heavy atoms on the ghost atoms.

● The POs may map a layer onto itself or relate adjacent layers.
● The layer interfaces need not be planar.
● Atoms may be located on the layer interfaces.

– These atoms belong to both adjacent layers.

● The layer choice is not necessarily unique.
– The chosen description should be as clear as possible.

● Aim for the simplest layer choice that explains all the observed effects.

H. Grell: “How to choose OD layers”, Acta Cryst. A40, 95–99 (1984).



  

OD vs. non-OD: MgTeO
8
H

8
● Tetragonal [P(4/m)] layers with composition Mg(H2O)2[TeO2(OH)4].

● H atoms predicted by bond-valence-sums. 



  

OD vs. non-OD: MgTeO
8
H

8
● From one layer to the next:
● Two ways of placing origin → Mg/Te exchange.
● Two ways of octahedron orientation → Orientation inversion.
● Non-OD, since pairs of adjacent layers are non-equivalent. 



  

OD vs. non-OD: MgTeO
8
H

8
● Two kinds of layers → OD
● OD interpretation splits the observed disorder in two components:

– Disorder owing to the hydrogen-bonding
– Disorder owing to the symmetry of the octahedra 

● OD is a empirical approach

A1: P(4/m) A2: Pmm(b)



  

Classification of POs
● λ-POs (λ stands for “layer”)

– POs that map a layer Li onto itself:

– Also written as i,iλ

– Correspond to local operations in the last session.
– The λ-POs of a given layer form a group that is isomorphic to the layer group.

● From now on we will not differentiate between layer groups and groups of λ-POs.

● σ-POs (σ stands for “space”)
– POs that map a layer Li onto a different layer Lj, i≠j

– Also written as i,jσ



  

Classification of POs
● τ-POs

– Keep the orientation with respect to the stacking direction.
– For example stacking direction [001]:

● The matrix representation of the linear part must have the form:

● ρ-POs (ρ stands for “reverse”)
– Invert the orientation with respect to the stacking direction
– For example stacking direction [001]:

● The matrix representation of the linear part must have the form:



  

Classification of POs
● Equivalent non-polar layers are always related by τ and ρ-POs.

– The λ-POs of a non-polar layer comprise λ-τ-POs and λ-ρ-POs.
● Equivalent polar layers are related by τ or ρ-POs (but never both).

– There are only λ-τ-POs in polar layers.
● Composition of τ and ρ-POs

● Inversion of an operation retains τ- and ρ-character.
● Conjugation (with other POs) retains τ- and ρ-character.



  

Notation for λ-POs 
● λ-POs can only be operations that appear in layer groups.
● Therefore, we can use standard Hermann-Mauguin notation.
● Intrinsic translation of glides reflections and screw rotations only parallel to the layer plane.
● Direction of the operation only parallel or perpendicular to layer plane.
● Higher order (n>2) operations only with direction perpendicular to layer plane.



  

Notation for σ-POs
● In POs relating different layers, non-spacegroup intrinsic translations can appear for screw rotations and glide reflections.
● Generalization of the Hermann-Mauguin symbols.
● Unfortunately, rather idiosyncratic and inconsistent:

– 2r, 2s: twofold rotation with intrinsic translation r/2, s/2 of the shortest lattice vector.

– 22, 24, 26, …:  twofold screw rotation mapping layer Li onto Li+1, Li+2, Li+3, …

– 33, 36, 39, …: threefold screw rotation mapping layer Li onto Li+1, Li+2, Li+3, …

– 44, 48, 412, …: fourfold screw rotation mapping layer Li onto Li+1, Li+2, Li+3, …

– 66, 612, 618, …: threefold screw rotation mapping layer Li onto Li+1, Li+2, Li+3, …

– nr,s: glide reflection with intrinsic translation
● Direction [100]: rb/2+rc/2
● Direction [010]: rc/2+ra/2
● Direction [001]: ra/2+rb/2
● Except for hexagonal layers, of course.

– ar, br, cr: shorthand for n0,s or nr,0 with intrinsic translation only in [100], [010] or [001] direction.

– c2, c4, c6, …: glide reflection mapping Li onto Li+1, Li+2, Li+3, … without intrinsic translation in the layer plane.

– a2, a4, a6, …: glide reflection mapping Li onto Li+1, Li+2, Li+3, … without intrinsic translation in the layer plane.

– b2, b4, b6, …: glide reflection mapping Li onto Li+1, Li+2, Li+3, … without intrinsic translation in the layer plane.



  

Notation for σ-POs



  

Continuation
● Two POs i,ja and k,lb are said to be a continuation if they are based on the same motion.

● In symbols:  i,ja↔k,lb

● Extreme case: a motion has continuations for all layers 
→ the motion is a total operation of the OD structure.

● Reverse continuations are continuations of POs that map Li on Lj and Lj on Li (i≠j):
– i,ja↔j,ib

– A reverse continuation must be a σ-ρ-PO.

– A reverse continuation represents a symmetry operation of the (Li,Lj) pair of layers.

– Pairs of layers that do not have a reverse continuation are polar.
● These pairs can appear in two orientations with respect to the stacking direction.



  

NFZ Relationship
● To determine the number of stacking possibilities, we use the NFZ relationship.
● It is based on one known (Li, Li+1) pair of layers and gives the number of ways of placing Li+1 such that geometrically 

equivalent pairs of layers are obtained.
● Coset decompostion of the group of λ-τ-POs valid for both layers in the group of  λ-τ-POs of Li.

Number of positions of L
i+1

given the position of L
i

Group of λ-τ-POs of L
i

(extended to global operations)

Group of λ-τ-POs of L
i
 that

have continuations in L
i+1

(extended to global operations)

Common translation group of L
i
 and L

i+1



  

NFZ Relationship



  

NFZ relationship
● One exception:

– If there are σ-ρ-POs and no reverse continuations.

– Application of the inverse of a σ-ρ-POs leads to a new lair pair with same Li.
● The two orientations of Li+1 are derived by double application of the motion of the inverse of a σ-ρ-PO

– The number of stacking possibilities is doubled.
– The NFZ relationship then reads as Z=2N/F.



  

OD family
● Given an OD structure, all alternative stacking 

arrangements with equivalent pairs of layers form an OD 
family of structures.

● Examples:
– Graphite ordered polytypes, twins, disordered stackings...
– SiC ordered polytypes, twins, disordered stackings...



  

Category of an OD family
● Owing to the (VCγ), for an OD family of layers of M kinds, only certain successions of τ- and ρ-POs are possible.
● These define the category of an OD family.
● There are a finite number of categories, which simplifies the analysis of OD families in general, as there are only a 

finite number of cases to consider.
● For M=1 layers, there are 3 categories:

– Category I:
●  …AAAA…
● Layers are non-polar, σ-τ- and σ-ρ-POs.

– Category II:
● …bbbb…
● Layers are polar, only σ-τ-POs.

– Category III: 
● …bdbd…
● Layers are polar, only σ-τ- and σ-ρ-POs.
● Two kinds of layer contacts!



  

Category of an OD family
● For M>1 layers there are four categories
● E.g. for layers of M=4 kinds:
● Category I:

– …A1b2b3b4d4d3d2A1b2b3b4d4d3d2…

● Category II:
– …b1b2b3b4b1b2b3b4…

● Category III:
– …b1b2b3b4d4d3d2d1b1b2b3b4d4d3d2d1…

● Category IV:
– …A1b2b3A4d3d2A1b2b3A4d3d2…



  

Composition of POs
● The composition of two POs is defined if and only if the target of the first is the source of the second.
● The resulting PO has the source of the first and the target of the second PO:

– i,kc=j,kb◦i,ja

● Composition of POs can be conveniently written using diagrams:

● A diagram is said to commute if all paths between the same nodes are equal



  

Groupoids
● A groupoid G is composed of

– A set of objects obj(G) (=Layers)
– A set or morphisms mor(G) (=POs)
– Two mappings src,trg: mor(G) → obj(G)
– A composition ◦ defined for a,b ob(∈ G) if and only if src(b)=trg(a)

H. Brandt. “Über eine Verallgemeinerung des Gruppenbegriffes”. Math. Ann. 96, 360–366  (1927).
C. Ehresmann. “Gattungen von Lokalen Strukturen”. Jahresber. Deutsch. Math.-Verein., 60, 49–77 (1957).



  

OD groupoids
● The composition of the POs of an OD structure forms an OD groupoid.
● Proof of groupoid properties are left as an exercise.
● Every polytype, twin, disordered stacking, etc. has its unique OD groupoid.
● An OD groupoid is composed of M connected components, where M corresponds 

to the number of types of layers. 



  

OD groupoid families
● The infinity of space groups are categorized into 230 crystallographic types of space groups.

– Space groups abstract from:
● Orientation
● Metrics

● In analogy: the OD groupoids are categorized into OD groupoid families.
– OD groupoid families abstract from:

● Orientation
● Metrics
● Stacking

– All OD groupoids that are built according to the same symmetry principle belong to the same OD groupoid family.
– There is an infinity of OD groupoid families.
– For layers of one kind with all the same lattice, there are 400 OD groupoid families.

● All OD groupoids of the same OD groupoid family are of the same category.
● An OD groupoid family has a point group:

– The group generated by the linear parts of all POs.
– Need not be a crystallographic point group (see tan-1¾ example)!



  

OD groupoid family symbols
● Depends on the number M of kinds of layers and the category of the OD groupoid family.
● M=1, Category I (…AAA…)

● M=2, Category II (…bbb…)

● M=3, Category III (…bdbdbd…)

Layer group of non-polar layer.

One set of σ-POs relating adjacent layers.
Usually contains σ-τ-POs and σ-ρ-POs.

Layer group of polar layer.

One set of σ-POs relating adjacent layers.
Only σ-τ-POs.

Layer group of polar layer.

Two sets of σ-POs relating adjacent layers.
Only σ-ρ-POs.



  

OD groupoid family symbols
● For layers of M>1 kinds:

– Origin-relation of layers of different kind given by pair of parameters [r,s]
– Corresponds to a shift in the layer plane of ra+sb, rb+sc or rc+sa.

Category I M=2 (…A1b2d2A1b2d2…):

Category II M=2 (…b1b2b1b2…):



  

OD groupoid family symbols
● For layers of M>1 kinds:

– Origin-relation of layers of different kind given by pair of parameters [r,s]
– Corresponds to a shift in the layer plane of ra+sb, rb+sc or rc+sa.

Category III M=2 (…b1b2d2d1b1b2d2d1…):

Category IV M=3 (…A1b2A1d2A1b2A1dm…):



  

OD groupoid family symbols
● For tetragonal, trigonal and hexagonal OD families, five- or seven-placed symbols may be necessary.
● Reason: Directions that are equivalent in space groups e.g. <100> may not be equivalent.
● Tetragonal: symbols given in [100], [010], [001], [110], [110] direction.

● Hexagonal: symbols given in [100], [010], [110], [001], [120], [210], [110] directions.



  

Metric parameters
● Metric parameters of OD groupoids:

– Lattice metrics of one layer (a, b, γ).
– Layer widths.
– Metric parameters of σ-POs (r, s).
– Origin shifts of adjacent layers (r, s).

● Parameters r, s may be fixed by atoms located at the layer interface.
● In triclinic and monoclinic/rectangular OD groupoids:

– For convenience, stacking vectors a0, b0 or c0 may be chosen not perpendicular to the layer planes.

– Some metric parameters of σ-POs become 0. In return, angle of the stacking vector to the layer plane must be specified. 



  

Metric parameters
● OD groupoids can adopt special metric parameters for 

which the number of stacking possibilities change:



  

Metric parameters
● The metric parameters can act as a measure of deviation from symmetry.
● Example:

– Organic molecule
– s=1, r~0.
– For r=0: fully ordered, Pnam

– Actual structure: Pna21

P2/a
r~0

Pna2
1

r~0

Pnam
r=0



  

MDO polytypes
● Polytypes that can not be decomposed into simpler polytype are said to be of a maximum degree of order (MDO).
● Usually in an MDO polytype not only all pairs, but also triples, quadruples, n-tuples of consecutive layers are equivalent.
● For any OD family, there is a finite number of MDO polytypes.

– The symmetry of the MDO polytypes depends on the OD groupoid family and the metric parameters.

K. Dornbeger-Schiff. Geometrical Properties of MDO Polytypes and Procedures for their Derivation. Acta. Cryst. A38, 483-491, 
1982.



  

MDO polytypes
● All stackings can be decomposed into fragments of MDO polytypes:

– A non-MDO polytype is a ordered succession of MDO fragments.
– A twin can be an MDO polytype with fragments of other MDO polytypes at the twin boundary.
– A disordered stacking can be described as an (weighted) overlay of MDO polytypes.
– …

● The MDO polytypes can be considered as the “alphabet” of an OD family.
● In many cases if a LiLi+1Li+2 triple is preferred during crystal growth, an MDO polytype is formed

– In most cases (though not all) ordered bulk polytypes are of the MDO kind!

K. Dornbeger-Schiff. Geometrical Properties of MDO Polytypes and Procedures for their Derivation. Acta. Cryst. A38, 483-491, 
1982.



  

Family structure
● The family structure is an equal overlap of all stacking possibilities.
● The symmetry of the family structure is obtained by extending all POs of a member to global operations and 

using these as group generator.
● The symmetry depends on the metric parameters r,s.

– For irrational r or s, the symmetry is not a spacegroup!



  

Family structure
● Reflections corresponding the family structure (=family reflections) are always sharp.

– These are realized for the whole stacking.

● Reflections of individual polytypes (=characteristic reflections) are sharp or diffuse.
– Depends on the degree of order of the polytype.
– Hence the name “order-disorder”.

MgTeO
8
H

8
: disordered polytypes KOH·2H

2
O: ordered polytypes



  

Family structure
● Coset decomposition of point group of polytype in point group of family structure

– Possible orientation domain states (twin individuals).

● Coset decomposition of space group of polytype in space group of family 
structure
– Possible orientation and translation domain states (twin individuals and antiphase 

domains).



  

Maximum equivalence regions
● By definition (VC) pairs LiLi+1 of adjacent layers are equivalent in all members of an OD family.

● In some OD families also LiLi+1Li+2 triples are geometrically equivalent in all members of the 
OD family.

● The largest n-tuples LiLi+1...Li+n-1 of consecutive layers layers that are geometrically equivalent 
in all members of an OD family are called maximum equivalence regions (MERs).

● If parts of an OD structure are part of more than 2 MERs, the choice of OD layers is 
ambiguous.

H. Grell: “How to choose OD layers”, Acta Cryst. A40, 95–99 (1984).



  

K
2
HAsO

4
·2,5H

2
O: layer pairs



  

K
2
HAsO

4
·2,5H

2
O: triples, etc.

● one kind of A1A2A1 triple (follows directly from NFZ)

● one kind of A2A1A2 triple

● one kind of A1A2A1A2A1 quintupel

● two kinds of hexuples



  

Desymmetrization
● An OD description is usually an idealized description.
● In actual polytypes, some POs will only be realized approximately.
● Deviation from ideal symmetry: desymmetrization.
● Seemingly paradox:

– Disorder → higher symmetry (extreme: family structure)
– Order → lower symmetry.

● Desymmetrization is one way of growing ordered polytypes:
– The polytypes are not perfectly locally equivalent.

● For an OD description to be valid, desymmetrization should be reasonably small.
– Excessive desymmetrization: These are not (OD) polytypes anymore.



  

Desymmetrization
● TBDMS-capped (3Z)-4-(methylthio)-3-penten-1-yne

– OD structure with negligible desymmetrization



  

Desymmetrization
● TIPS-capped (3Z)-4-(methylthio)-3-penten-1-yne

– OD structure with strong desymmetrization if described as composed of one kind of layer
– Decompose into two layers and the desymmetrization vanishes
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