Exercise 1a, solution

One kind of layer with $P(1)2_1/c$ symmetry. Adjacent layers related by screw rotations and glide reflections.

Exercise 1b, solution

Two kinds of layers. No POs relating adjacent layers.

Exercise 1c, solution

One kind of polar layer with *P*(2)*cm* symmetry. Cl⁻ and Ca²⁺ ions located at the layer interface: They fulfill the symmetry conditions of both adjacent layers. Adjacent layers related by screw rotations and glide reflections.

Exercise 1d, solution

Solution 2: One kind of layer. Adjacent layers related by glides and screws. Solution 1: Two kinds of layers. One with doubled translation in [001] No POs relating adjacent layers.

Exercise 2a, solution

- [100]: $2_2 \tau$ -PO (intrinsic translation \mathbf{a}_0)
- [100]: n_{1,s} ρ-PO (intrinsic translation b/2+sc/2)
- [001]: $2_{s+1} \rho$ -PO (intrinsic translation sc/2+c/2)
- [001]: $a_2 \tau$ -PO (intrinsic translation \mathbf{a}_0)

Exercise 2b, solution

• No POs

Exercise 2c, solution

- $b_n \rightarrow d_{n+1}$:
 - [100]: $c_{5/3} \rho$ -PO (intrinsic translation -c/6)
 - [010]: 2 ρ-PO
 - [001]: $2_{2/3} \rho$ -PO (intrinsic translation **c**/3)
- $d_{n+1} \rightarrow b_{n+2}$:
 - [100]: $n_{1,4/3} \rho$ -PO (intrinsic translation **b**/2-**c**/3)
 - [010]: $2_1 \rho$ -PO (intrinsic translation **b**/2)
 - [001]: $2_{1/3} \rho$ -PO (intrinsic translation **c**/6)

Exercise 2d, solution

- Interpretation 1 (layers of two kinds):
 - No POs between different kinds of layers
- Interpretation 2 (layers of one kind):
 - $2_2 \tau$ -PO (intrinsic translation **b**₀)
 - $c_{1/2}$ (intrinsic translation c/4)

Exercise 3a, solution

- There are $\sigma\text{-}\rho\text{-}POs$ and no reverse-continuation.
- $G_i = P(1)c1 G_i \cap G_{i+1} = P(1)c1.$
- Z=2N/F=2[P(1)c1:P(1)c1]=2
- Two orientations of L_{i+1} related by translation along sc.

Exercise 3b, solution

- No σ-ρ-POs.
- $A^1 \rightarrow A^2$
 - $G_i = P(2)cm G_i \cap G_{i+1} = P(1)c1.$
 - Z=N/F=[P(2)cm:P(1)c1]=2
 - Orientations related by { $2_{[100]}$, $m_{[001]}$ } (+ translations)
- $A^2 \rightarrow A^1$
 - $G_i = P(1)c1$ $G_i \cap G_{i+1} = P(1)c1$.
 - Z=N/F=[P(1)c1:P(1)c1]=1
 - Only one way of placing the A¹ layer

Exercise 3c, solution

- No σ-ρ-POs.
- $A^1 \rightarrow A^2$
 - $G_i = P(4)$ $G_i \cap G_{i+1} = P(11(2))$.
 - Z=N/F=[P(4):P11(2)]=2.
 - Orientations related by { $4_{[001]}$, $4_{[001]}$ } (+translations and $m_{<110>}$ reflections)
- $A^2 \rightarrow A^1$
 - G_i =*Pmm*(2) G_i ∩ G_{i+1} =*P*11(2).
 - Z=N/F=[Pmm(2):P11(2)]=2.
 - Orientations related by { $m_{[100]}$, $m_{[010]}$ } (+translations and $m_{<110>}$ reflections)

Exercise 3d, solution

- Interpretation 1 (layers of two kinds):
 - No σ-ρ-POs
 - $A^1 \rightarrow A^2$
 - $G_i = X1(1)1, G_i \cap G_{i+1} = P1(1)1.$
 - N/F = [X1(1)1:P1(1)1] = 2.
 - Orientations related by translation along $\mathbf{c}/2$.
 - $A^1 \rightarrow A^2$
 - $G_i = P1(1)1, G_i \cap G_{i+1} = P1(1)1.$
 - N/F=[P1(1)1:P1(1)1]=1.
 - Only one way of placing A^2 given A^1 .
- Interpretation 2 (layers of one kind)
 - $\sigma\text{-}\rho\text{-}POs$ and no reverse continuations
 - $G_i = P1(1)1, G_i \cap G_{i+1} = P1(1)1.$
 - Z=2N/F=2[P1(1)1:P1(1)1]=2.
 - Orientations related by translation along c/2 (double application of $c_{1/2}$).

Exercise 4a, solution

• See slides.

Exercise 4b, solution

- 3a: *M*=1, category I
- 3b: *M*=2, category IV
- 2c: M=1, category III
- 3c: *M*=2, category IV
- 3d:
 - M=2, category IV
 - M=1, category I

Exercise 5, solution

• **3a:**
$$P$$
 (1) $2_1/c$ 1
{ $(2_2, n_{1,s})$ - $2_{s+1}/a_2$ }

• **3b:**
$$P(b)cm = [r,s] = P(1)2_1/c1$$

• 2c:
$$P$$
 (2) c m
{ $(n_{r,s+1})$ 2_r 2_s }
{ $(n_{r',s'+1})$ $2_{r'}$ $2_{s'}$ }

Exercise 5, solution

• **3c:**
$$P(4/m)$$
 $[r,s]$ $Pmm(a)$

• 3d: X1(c)1 [r,s] $P\overline{1}(\overline{1})\overline{1}$