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Graph Theory in Crystal Structure Description

Overview

I historical review
I basic concepts
I algebraic description
I quotient graphs
I voltage graphs
I embeddings



From crystal structures to graphs

Representation of crystal structures

Crystal structures are represented graphically in various ways, e.g. by
coordination polyhedra or ball-and-stick models, showing not only the
atoms, but also the bonds between them.

Abstraction from the concrete atoms leads to the mathematical
concept of graphs, consisting of vertices and edges displaying
adjacency between certain vertices.



Some early examples

Archibald Scott Couper (1858) Alexander Crum Brown (1864)

The term graph was introduced in 1878 by James Joseph Sylvester.

Different representations of fullerenes



2- and 3-dimensional nets
2-dimensional regular tilings

Examples of 3-dimensional periodic nets



Definition

I A graph G consists of a vertex set V = V(G) and an edge set
E = E(G), where each edge e ∈ E has assigned to it its endpoints
X,Y ∈ V.

I A simple graph is a graph without multiple edges and without
loops, i.e. each pair of vertices is connected by at most one edge
and the two endpoints of each edge are distinct.

I To stress that a graph may contain multiple edges or loops it is
sometimes called a multigraph.

I The vertices and edges of a graph may or may not carry labels.



Some terminology

I The number n = #V of vertices of a graph is called its order, the
number m = #E of edges its size.

I The number of edges emerging from a vertex X is called the
degree of X, denoted by degX. A loop at X contributes 2 to
degX.
Example: degA = 3, degB = 5, degC = 2

I Two vertices are called adjacent or neighbours, if they are
connected by an edge.

I Two edges are called adjacent if they share a vertex.
I The endpoints of an edge are said to be incident with that edge.



Exercise: The seven bridges of Königsberg (1736)

I Is there a route around the city of Königsberg which crosses
each of the seven bridges across the river Pregel precisely once?

Such a route is called an Euler walk – or an Euler circuit in case it is a
closed walk.

I Is there an Euler walk if one bridge is omitted?
I And with one bridge extra?
I How many extra bridges are required (and where) to obtain an

Euler circuit?



Solution: The seven bridges of Königsberg

There exists an Euler circuit if and only if all vertices have even
degree.

There exists an Euler walk that is not a circuit if and only if there are
precisely two vertices with odd degree. In this case, these are the
initial and terminal vertices of the walk.

Since all vertices have odd degree, omitting or adding one bridge
allows for an Euler walk.

Introducing two extra bridges between disjoint pairs of vertices allows
for an Euler circuit.



Some standard types of simple graphs

I In the complete graph Kn of order n, every pair of distinct
vertices is connected by a single edge. The size of Kn is
n(n− 1)/2.

I In the linear graph Ln of order n, the vertices are arranged in a
line. The size of Ln is n− 1.

I The cycle graph Cn of order n is obtained by connecting the two
endpoints of the linear graph Ln. Thus, in the cycle graph, every
vertex has exactly two neighbours. The size of Cn is n.

I The wheel graph Wn of order n consists of a cycle graph of order
n− 1 and an additional vertex which is connected to every vertex
of the cycle graph by a single edge. The size of Wn is 2n− 2.



Bipartite graphs

In a bipartite graph, the vertices can be coloured with two colours
such that only vertices of different colour are adjacent.

The complete bipartite graph Kn,m contains all edges between pairs
of vertices of different colour.

K5,3



Multipartite graphs

In the complete multipartite graph Kn1,n2,...,nr , the vertices are
coloured in r colours with ni vertices of colour i and each pair of
vertices of different colour is adjacent.

K2,2,2 K3,3,3 K2,2,2,2

Quick quiz

Do you recognise this graph?



Some standard types of multigraphs

B4 K2
{3} K3

{2}

I The bouquet Bn has n loops at a single vertex.
I The complete multigraph Kn

{m} has n vertices and each pair of
vertices is connected by m edges.



Traversing a graph
Walks, paths and cycles

I A walk from X to Y is an alternating sequence
X = X0, e1, X1, e2, . . . , Xl−1, el, Xl = Y such that ei is an edge
with endpoints Xi−1 and Xi.

I In a closed walk, the initial and terminal vertex coincide.
I A path is a walk in which each vertex occurs only once, except

that the initial and terminal vertex are allowed to coincide.
I A cycle is a closed path.
I The number l of edges is called the length of the walk.
I The distance between two vertices X,Y is the length of the

shortest path between them and is denoted by d(X,Y ).



Vertex-connectivity

I A graph is called connected if any pair of vertices is connected
by a walk (actually by a path, why?).

I A graph is called k-connected if it remains connected whenever
fewer than k vertices (and their incident edges) are removed.
The 1-connected graphs are precisely the connected graphs.

I The largest k such that G is k-connected is called the
connectivity κ(G) of G.

κ(G) = 4 κ(G) = 2

I Equivalent definition: A graph is k-connected if there exist at
least k independent paths between every pair of vertices.
(Two paths between X and Y are called independent if they only
share the initial and terminal vertex.)



Edge-connectivity

I A graph is called l-edge-connected if it remains connected
whenever fewer than l edges (but not their incident vertices) are
removed.

I The largest l such that G is l-edge-connected is called the
edge-connectivity λ(G) of G.

I Lemma: κ(G) ≤ λ(G) ≤ δ(G), where δ(G) is the minimal degree
of a vertex of G.

κ(G) = 4

λ(G) = 4

κ(G) = 2

λ(G) = 4

Quick quiz

Determine κ(G) and λ(G) for this
graph.



Subgraphs

I A subgraph H of a graph G has V(H) ⊆ V(G) and E(H) ⊆ E(G)
such that the endpoints of each e ∈ E(H) lie in V(H).

subgraph induced subgraph spanning subgraph

I A subgraph H is called an induced subgraph if E(H) contains all
edges of G having both endpoints in V(H).

I The maximal connected induced subgraphs of a graph are called
its (connected) components.

I A subgraph H of G containing all vertices of G is called a
spanning (sub)graph of G.



Exercise: Hamiltonian circuits
A graph with a spanning cycle is called a Hamiltonian graph, the
spanning cycle is called a Hamiltonian circuit. A Hamiltonian circuit is
thus a closed walk that visits every vertex precisely once.

I Find a Hamiltonian circuit in the dodecahedral graph (left).
I The Petersen graph (right) has no Hamiltonian circuit (proving

this is somewhat tedious).
However, if one of the vertices (and its incident edges) is
removed, the resulting graph has a Hamiltonian circuit.

Demonstrate this for one of the interior and for one of the exterior
vertices removed.



Solution: Hamiltonian circuits



Acyclic graphs
Definition
A graph without cycles is called a forest, a connected graph without
cycles is called a tree.

Some important properties of trees

I A tree with n vertices has n− 1
edges.

I Any two vertices in a tree are
connected by a unique path.

I Removing any edge from a tree
disconnects it.

I Adding an edge between two
vertices of a tree creates a cycle.

I Every tree is a bipartite graph.
I Every connected graph contains a spanning tree (omit edges

from cycles until there are no cycles left).



Exercise: Small trees

I How many spanning trees does the complete graph K4 contain?

I How many of these are essentially different (i.e. have different
adjacency relations)?

I A tree with n+ 1 vertices can be obtained from a tree with n
vertices by adding a new vertex with a new edge to one of the
vertices (i.e. by growing a new vertex).

Use this (and the fact that a tree with 3 vertices is necessarily a
linear graph) to enumerate all essentially different trees with 4, 5
and 6 vertices.



Solution: Small trees

I A spanning tree has 3 edges, there are
(
6
3

)
= 20 ways to select 3

of the 6 edges, but 4 of these choices result in a cycle (triangle),
thus there are 16 spanning trees.
Cayley’s formula: Kn has nn−2 spanning trees.

I There are only two essentially different spanning trees, one is a
linear graph and one has a vertex of degree 3:

I n = 5:

I n = 6:



Morphisms of graphs
Definition
A morphism between two graphs G and H is a pair of mappings
φV : V(G)→ V(H) and φE : E(G)→ E(H) such that the image φE(e)
of an edge e with endpoints X,Y has endpoints φV(X), φV(Y ).

Morphisms of simple graphs

I For simple graphs, a morphism is fully determined by the
mapping φV of the vertices, since φV(X) and φV(Y ) are joined
by a unique edge (if X and Y are adjacent).

I An elementary morphism of a simple graph identifies two
nonadjacent vertices.
Lemma: Every morphism of a simple graph can be obtained as a
sequence of elementary morphisms.



Isomorphisms and automorphisms

I If both mappings φV and φE of a morphism are bijective, the
morphism is called an isomorphism and the two graphs G and H

are called isomorphic. Notation: G ∼= H.
I An isomorphism of a graph G to itself is called an automorphism.

The full group of automorphisms of G is denoted by Aut(G).
I The automorphisms of a simple graph are the permutations of

the vertices which are compatible with the adjacency relation.

Exercise: Small automorphism groups

Determine the automorphism groups of the six connected simple
graphs with 4 vertices.

• •

• •

A

• •

• •

B

• •

• •

C

• •

• •

D

• •

• •

E

• •

• •

F



Solution: Small automorphism groups

It is often useful to determine the orbit and the stabiliser of one vertex
under the automorphism group.

• •

• •

A

• •

• •

B

• •

• •

C

• •

• •

D

• •

• •

E

• •

• •

F

A: Aut(G) ∼= Z2, only reflection possible.
B: Aut(G) ∼= D4, all automorphisms are geometric.
C: Aut(G) ∼= S3, all permutations of degree 1 vertices.
D: Aut(G) ∼= Z2, only swapping of degree 2 vertices.
E: Aut(G) ∼= Z2 × Z2, all automorphisms are geometric.
F : Aut(G) ∼= S4, all permutations are allowed.



Automorphisms for general graphs

In this graph, φV is necessarily trivial, but φE may (independently)
swap the edges e3 and e4 and the loops e5 and e6.

Problem: A loop has two ends, contributing 2 to the degree of a
vertex. The reversal of a loop by swapping its ends is not covered by
our current definition of a graph automorphism.

A convenient way to introduce this new type of automorphism is to
endow the graph with an orientation by assigning a direction to each
edge.

Unlike in directed graphs, an oriented
edge can still be traversed in both di-
rections.



Turning an undirected graph into an oriented graph

I An orientation assigns a direction to each edge of a graph by
considering it as an ordered pair (X,Y ) directed from X to Y .

I A directed edge (X,Y ) is called an arc, its initial vertex X is
called its tail (or source), its terminal vertex Y its head (or target).
Correspondingly, arcs are usually represented by arrows.

I A graph G with edge set E(G) is turned into an oriented graph by
assigning to each edge e = {X,Y } an orientation (X,Y ):

I denote the arc (X,Y ) with positive orientation by e+;
I denote the arc (Y,X) with opposite orientation by e−.

The set E± = {e+, e− | e ∈ E(G)} is called the arc set of the
oriented graph.

I The mapping ι : e+ → e−, e− → e+ reversing each arc is called
the reversal of the orientation.



Definition
Let G be a graph with an orientation resulting in an arc set E±.
An automorphism of G is a pair of bijections φV and φE of V(G) and
E±, respectively, such that the image φE(e) of an arc e = (X,Y ) is the
arc (φV(X), φV(Y )).
Moreover, φE must be invariant under reversal of the orientation, i.e.
first applying ι and then φE is the same as first applying φE and then ι.
This means: if (eε1i1 , e

ε2
i2
, . . . , eεrir ) with εi ∈ ± is a permutation cycle in

φE, then also (e−ε1i1
, e−ε2i2

, . . . , e−εrir
) is a cycle in φE.

Some important properties

I Every automorphism is fully determined by φE.
I The φE fixing all vertices form a normal subgroup K of Aut(G).
I The quotient group Aut(G)/K corresponds to the vertex

automorphism group AutV(G) induced by the mappings φV.
I AutV(G) can be identified with a subgroup of Aut(G) having

trivial intersection with K, therefore Aut(G) is the semidirect
product K oAutV(G) of K by AutV(G).



Exercise: Automorphism group

I Determine the vertex automorphism group of the above graph.
I What is the group of automorphisms fixing all vertices, what are

generators for this group?
I What is the order of the automorphism group of the graph?
I Give explicitly an automorphism of order 6 of the graph.



Solution: Automorphism group

I The vertex automorphism group consists of all 3! = 6
permutations of the three vertices.

I Generators of the group fixing all vertices are (e+1 , e
+
2 ), (e+3 , e

+
4 ),

(e+5 , e
+
6 ) (with the opposite edges mapped accordingly) and

(e+7 , e
−
7 ), (e+8 , e

−
8 ), (e+9 , e

−
9 ).

In total, this is the direct product Z6
2 of six copies of Z2.

I The order of the full automorphism group is 26 · 3! = 384.
I An automorphism of order 6 is

(e+1 , e
+
3 , e

+
5 )(e+2 , e

+
4 , e

+
6 )(e+7 , e

−
8 , e

+
9 , e
−
7 , e

+
8 , e
−
9 ).



Quotient graphs.
Graph of the orbits

I Let Γ be a subgroup of Aut(G). Denote by [X] the orbit of a
vertex X under Γ and by [e] the orbit of an edge e.

I The graph Q = Q(G,Γ) = G/Γ having the vertex orbits [X] as its
vertices and the edge orbits [e] as its edges is called the quotient
graph (with respect to Γ).
Two vertices [X], [Y ] are adjacent in Q if X ′, Y ′ are adjacent in G

for some X ′ ∈ [X] and Y ′ ∈ [Y ].

Example: Rotation of order 3 on the Fano plane graph



Simple quotient graphs

I Vertices at distance 1 (i.e. adjacent) lying in the same orbit give
rise to loops in the quotient graph.

I Vertices at distance 2 in the same orbit result in multiple edges in
the quotient graph.

I Conclusion: If the quotient graph is required to be a simple
graph, vertices in the same orbit need to have at least distance 3.

Free actions

I An automorphism acts freely if it has no fixed points on the
vertices and on the edges.

I If all nontrivial automorphism in Γ act freely, then the vertex
degrees are preserved in the quotient graph G/Γ.

I A typical choice for a subgroup of Aut(G) that acts freely is the
group of translations.
This corresponds to the concept of building up a crystal structure
from the unit cell.



The square net
Subgroups acting freely

I Full translation lattice L = {ma + nb | m,n ∈ Z}.
I Checkerboard sublattice L′ = {ma + nb ∈ L | m+ n even}.
I Scaled sublattices 2L and 2L′.

L = {ma+ nb | m,n ∈ Z}.

−→

Q ∼= B2

Aut(Q) = Z2
2 o Z2

|Aut(Q)| = 8



L′ = {ma+ nb | m,n ∈ Z,m+ n ∈ 2Z}.

−→
Q ∼= K

{4}
2

Aut(Q) = S4 o Z2

|Aut(Q)| = 48

2L = {ma+ nb | m,n ∈ 2Z}.

−→

Q ∼= C
{2}
4

Aut(Q) = Z4
2 oD4

|Aut(Q)| = 128



2L′ = {ma+ nb | m,n ∈ 2Z,m+ n ∈ 4Z}.

−→

Q ∼= K4,4

|Aut(Q)| = 1152

Summary: Series of quotients for the square net



Exercise: Quotient graphs

I Determine the quotient graphs of the Archimedean nets of type
4.82 (left) and 3.6.3.6 (right) with respect to the translation
subgroup indicated by the unit cell.

I Also, determine the automorphism groups of the quotient graphs.



Solution: Quotient graphs

−→

Q ∼= K4

Aut(Q) = S4

|Aut(Q)| = 24

−→
Q ∼= K

{2}
3

Aut(Q) = Z3
2 oD3

|Aut(Q)| = 48



Non-translational automorphisms acting freely

Archimedean net 3.122

−→

Fixed-point free rotation of order 3

center of rotation: center of dodecagon or center of triangle



Archimedean net 4.6.12

−→

Fixed-point free rotations (around center of dodecagon)

order 2 order 3 order 6



Archimedean net 3.4.6.4

−→

Fixed-point free rotations (around center of hexagon)

order 2 order 3 order 6



Periodic nets

Definition

I A net N is a simple 3-connected graph, which is locally finite (i.e.
every vertex has finite degree).

I A net N is called p-periodic if it has an embedding into Rn (for
n ≥ p) such that Aut(N) contains translations in p independent
directions.

I Embedding-independent definition: A p-periodic net is a pair
(N, T ) of a net N and a subgroup T ≤ Aut(N) such that T ∼= Zp
(i.e. T is free abelian of rank p) and T has finitely many orbits on
both the vertices and the edges of N.

I A p-periodic net is called a minimal net if the deletion of any edge
and its translates disconnects it into (p− 1)-periodic subgraphs.



Minimal vs. non-minimal nets

minimal honeycomb net 63 non-minimal net 4.82

The cyclomatic number

In a connected graph of order n and size m, a spanning tree has n− 1
edges and adding p further edges creates p independent cycles.
The number p = m− (n− 1) is called the cyclomatic number of the
graph.

Consequence

The quotient graph of a minimal p-periodic net of order n has n− 1 + p
edges, hence there are only finitely many minimal p-periodic nets.



Quotient graphs of the 2- and 3-dimensional minimal nets

Note: B2 belongs to the square net and K2
{3} to the honeycomb net,

but the dumbbell graph does not belong to a planar net.



Crystallographic nets

I An n-dimensional crystallographic space group Γ is a group with
a normal subgroup T ∼= Zn such that Γ/T is finite and T
coincides with its centraliser in Γ (i.e. T is maximal abelian).

I A crystallographic net is a net whose automorphism group is
isomorphic to a crystallographic space group.

I Alternative characterisation:
I A local automorphism of a net N is an automorphism φ with a

global bound b on the distance d(X,φ(X)) between a vertex and
its image.

I The local automorphisms form a normal subgroup Λ(N) of Aut(N).
I A net N is a crystallographic net if and only if Λ(N) is free abelian

(i.e. ∼= Zn for some n) and has only finitely many orbits on both the
vertices and the edges of N.

A non-crystallographic net
Reflection σ commutes with the
translation, but 〈t, σ〉 ∼= Z × Z2

is not free abelian.



Automorphisms of crystallographic nets

I For a crystallographic net N, the point group Aut(N)/T is
isomorphic to a subgroup of the automorphism group Aut(N/T )
of the quotient graph Q = N/T .

I For a minimal net, Aut(N)/T is isomorphic to Aut(N/T ).
I In the general case, only those automorphisms of Aut(N/T ) are

admissible which preserve cycles in N.
We will come back to this later in the context of voltage graphs.



Example: Rhenium trioxide (ReO3)

I Translation subgroup T : primitive cubic lattice

O1

O′′1 O′1

I quotient graph Q = N/T ∼= K1,3
{2}

I 1 orbit on Re-atoms
I 3 orbits on O-atoms
I 6 orbits on edges
I point group Aut(N)/T ∼= m3̄m is

isomorphic to Aut(Q) ∼= Z3
2 o S3



Exercise: The β −W net

For the β −W net N above, determine
I the translation subgroup T ;
I the orbits of T on the vertices and edges;
I the quotient graph Q = N/T and its automorphism group;
I the point group Aut(N)/T .



Solution: The β −W net

A

A

B B

B

CC

C

I quotient graph Q = N/T ∼= K3
{2}

I 1 orbit on A-, B- and C-atoms,
respectively

I 6 orbits on edges

A

B C

I point group Aut(N)/T ∼= mm2 (generated by swapping B, C and
by swapping the two edges between A and B and between A
and C) is isomorphic to a subgroup of Aut(Q) ∼= Z3

2 o S3



Example: Caesium chloride (CsCl)

I Translation subgroup T : primitive cubic lattice

I quotient graph Q = N/T ∼= K2
{8}

I 1 orbit on Cs-atoms
I 1 orbit on Cl-atoms
I 8 orbits on edges

I point group Aut(N)/T ∼= m3̄m is isomorphic to a subgroup of
Aut(Q) ∼= S8 o Z2



Example: Sodium chloride (NaCl)

I Translation subgroup T : face centred cubic lattice

I quotient graph Q = N/T ∼= K2
{6}

I 1 orbit on Na-atoms
I 1 orbit on Cl-atoms
I 6 orbits on edges

I point group Aut(N)/T ∼= m3̄m is isomorphic to a subgroup of
Aut(Q) ∼= S6 o Z2



Example: Calcium fluoride (CaF2)

I Translation subgroup T : face centred cubic lattice

I quotient graph Q = N/T ∼= K1,2
{4}

I 1 orbit on Ca-atoms
I 2 orbits on F-atoms
I 8 orbits on edges

I point group Aut(N)/T ∼= m3̄m is isomorphic to a subgroup of
Aut(Q) ∼= S2

4 o Z2



Exercise: Sphalerite (ZnS)

Determine
I the type of the translation subgroup T ;
I the orbits on the vertices and edges;
I the quotient graph Q = N/T and its automorphism group;
I the point group Aut(N)/T .



Solution: Sphalerite (ZnS)

I Translation subgroup T : face centred cubic lattice

I quotient graph Q = N/T ∼= K2
{4}

I 1 orbit on Zn-atoms
I 1 orbit on S-atoms
I 4 orbits on edges
I point group Aut(N)/T ∼= 4̄3m is isomorphic to the subgroup of
Aut(Q) ∼= S4 o Z2 fixing the vertices (which represent different
types of atoms)



Two problems and a solution
Two problems

1) Different nets give rise to the same quotient graph.

−→ ←−

How can we provide additional information in the quotient graph
that distinguishes the different nets?

2) How can we reconstruct one or more periodic nets from a given
quotient graph?

Solution: Voltage graphs

Assign labels to the edges of the quotient graph that correspond to
translations in (an embedding of) the underlying net.



Assigning labels in a voltage graph

I Label the arc (X,Y ) in the quotient graph by the translation t
such that (X,Y + t) is an edge in the original periodic net.

I Labels for zero translations (i.e. edges within the unit cell) are
omitted.

−→

→ ←



Voltage graph for the hexagonal net

−→

Voltage graph for the Archimedean net 3.6.3.6

−→



Exercise: Voltage graph for the β −W net

A

A

B B

B

CC

C

10

01

Determine the voltage graph for the β −W net with respect to the
indicated basis.

Solution: Voltage graph for the β −W net
A

B C
01

10 10



Generating a net from a voltage graph

I Choose a spanning tree in the quotient graph and label its edges
by zero voltages. This serves as the connected part of the net
inside the unit cell.

I In order to generate an n-dimensional net, label n edges (not in
the spanning tree) by linearly independent translation vectors.

I Choose arbitrary translation vectors (possibly 0) for the
remaining edges.

I Rules ensuring the generation of a simple graph:
I Loops at the same vertex must have different labels 6= 0.
I Parallel edges between two vertices must have different labels,

anti-parallel edges must not have opposite labels.



Variations of the hexagonal net

−→

−→

−→



Voltage graphs for minimal nets

I For minimal nets, the assignment of the voltages can be omitted,
since the p = m− (n− 1) edges not contained in the spanning
tree must be assigned p linearly independent translation vectors,
i.e. a basis of Rp.

I Different labelling of the edges corresponds to different choices
of the unit cell and relabelling of the vertices.

I Recall that for minimal nets Aut(N)/T is isomorphic to
Aut(N/T ).



Automorphism groups reloaded

Automorphisms for the honeycomb net 63

Aut(N/T ) is generated by
σ1 = (a+, b+, c+)(a−, b−, c−)
σ2 = (a+, b+)(a−, b−)
σ3 = (a+, a−)(b+, b−)(c+, c−)

Cycle with zero voltage is w = a+c−b+a−c+b−:
σ1(w) = b+a−c+b−a+c− = w, σ2(w) = b+c−a+b−c+a− = w−,
σ3(w) = a−c+b−a+c−b+ = w
⇒ all automorphisms in Aut(N/T ) give rise to automorphisms in
Aut(N)/T .



Automorphism for the Archimedean net 4.82

Aut(N/T ) is generated by
σ1 = (a+, b+, c+, d+)(a−, b−, c−, d−) [induced by (A,B,C,D)]
σ2 = (a+, d−)(a−, d+)(b+, c−)(b−, c+)(f+, f−) [induced by (B,D)]
σ3 = (a+, a−)(b+, e+)(b−, e−)(d+, f−)(d−, f+) [induced by (A,B)]

Cycle with zero voltage is w = a+b+c+d+:
σ1(w) = b+c+d+a+ = w, σ2(w) = d−c−b−a− = w−,
σ3(w) = a−e+c+f− with voltage (1,−1)
⇒ Aut(N)/T ∼= 〈σ1, σ2〉 ≤ Aut(N/T )



Cycle and cocycle spaces

I For a finite graph G with edges E = {e1, . . . , em}, the Z-linear
combinations

∑m
i=1 λiei with λi ∈ Z form a Z-module LE, called

the 1-chain space.
I The 1-chains corresponding to cycles in G are called cycle

vectors and span the cycle space C = C(G) ⊆ LE.
I The coboundary operator δ assigns to a vertex X ∈ V(G) the star

vector

δ(X) =
∑
e∈E

εee with εe =


1 if X is the tail of e;
−1 if X is the head of e;
0 if X is not incident with e.

Thus, δ(X) is the sum of arcs incident with X, taken positive for
outgoing and negative for incoming arcs.

I The subspace of LE spanned by the δ(X) is called the cocycle
space or cut space and is denoted by C∗ = C∗(G).



Properties of the cycle and cocycle spaces C and C∗

I Considering the edges ei as an orthonormal basis of LE, i.e.
ei · ej = δij , C and C∗ are orthogonal complements of each other:

LE = C⊕ C∗, C⊥ = C∗, (C∗)⊥ = C.

I
∑
X∈V δ(X) = 0, since every edge occurs once in both

orientations.
I dimC∗ = n− 1 and a basis of C∗ are the star vectors δ(X)

running over all but one vertex.
I dimC = m− n+ 1 is equal to the cyclomatic number of G.
I For a partition V = V1 ∪ V2 of the vertices, the arcs with tail in V1

and head in V2 are called a cut and the corresponding sum in LE

is called a cut vector.
The special partitions V1 = {X} and V2 = V \ {X} give the star
vector δ(X).

I All cut vectors are linear combinations of the star vectors.



Example: K4

n = 4 vertices, m = 6 edges⇒ dimC = 3

basis of C basis of C∗

e1 + e4 − e5 δ(A) = e1 − e3 − e4
e2 + e5 − e6 δ(B) = −e1 + e2 − e5
e3 − e4 + e6 δ(C) = −e2 + e3 − e6

Cycle-cocycle basis

M =


1 0 0 1 −1 0
0 1 0 0 1 −1
0 0 1 −1 0 1
1 0 −1 −1 0 0
−1 1 0 0 −1 0
0 −1 1 0 0 −1


basis transformation matrix M : rows express the combined bases for
C and C∗ in terms of the standard basis of LE.



Exercise: Cycle and cocycle space
A

B C
e5

e1
e2

e4
e3

For the graph given above, determine:
I the dimensions of the cycle space C and the cocycle space C∗;
I a basis for the cycle space C;
I a basis for the cocycle space C∗;
I the matrix M containing as rows the combined bases for C and

C∗ in terms of the standard basis of LE.



Solution: Cycle and cocycle space
A

B C
e5

e1
e2

e4
e3

I n = 3, m = 5 = dimLE

⇒ dimC = m− (n− 1) = 3, dimC∗ = n− 1 = 2

I three independent cycles are: e1 − e2, e3 − e4, e2 + e5 − e3
I star vectors: δ(A) = e1 + e2 + e3 + e4, δ(B) = −e1 − e2 + e5

I M =


1 −1 0 0 0
0 0 1 −1 0
0 1 −1 0 1
1 1 1 1 0
−1 −1 0 0 1





Specifying an embedding from a voltage graph

I The voltages are vectors in Rp.
I An embedding α into Rr with r ≥ p

I assigns to each vertex X a point α(X) ∈ Rr,
I maps the arc e = (X,Y ) to α(e) = α(Y )− α(X),
I maps a basis of the voltage space Rp to p linearly independent

vectors in Rr.
I Boundary condition: for each cycle w, α(w) must coincide with

the image of the voltage of this cycle.
I Thus, the voltages fully determine α on the cycle space C, the

freedom lies in the mapping of the cocycle space C∗.
I For that, assign to each vertex Vi a vector L∗i = α(δ(Vi)) ∈ Rr

such that
∑n
i=1 L

∗
i = 0 (recall that

∑n
i=1 δ(Vi) = 0).

The set of L∗i is called a co-lattice in Rr, its span can have any
dimension between 0 and min(r, n− 1).

I Consequence: An embedding for a voltage graph is determined
by choosing a lattice basis of rank p and a co-lattice in Rr.



Some conventions and terminology on embeddings

I It is convenient (but not necessary) to select a basis of the cycle
space having as voltages the standard basis of Rp.

I Often (but not always) one of the vertices is chosen as the origin
of the coordinate system.

I An embedding is regarded as a proper embedding if all vertices
are mapped to different points in Rr and if the edges have no
crossings.

I An embedding is called a good embedding if the distance
between non-adjacent vertices is strictly larger than that between
any pair of adjacent vertices.



Example of a non-proper embedding

e3

e1

10

e2

01

I e1, e2 form a basis of the cycle space and e3 of the cocycle space.
I Any 2-dimensional embedding of this net will have crossings,

a barycentric embedding (where each vertex is at the centre of
mass of its neighbours) will even not be injective, since the edge
e3 collapses.

I Theorem: A minimal net without a bridge (i.e. a cut consisting of
a single edge) has a proper embedding.



Choice of the co-lattice
I voltage assignment in R1, embedding into R2

I C is spanned by e1 − e2,
C∗ is spanned by δ(A) = e1 + e2

1) arbitrary co-lattice vector L∗A:
symmetry of embedding is p211

2) L∗A perpendicular to translation
α(e1 − e2):
symmetry of embedding is p2mg

3) L∗A = 0:
symmetry of embedding is p2mm
with translation halved



Barycentric embedding

Definition
The special case that all δ(Vi) and thus all elements of C∗ are
mapped to 0 is called the barycentric embedding.

Why is it called the barycentric embedding?

I Since the sum of the outgoing arcs at every vertex is zero, each
vertex lies at the centre of mass of its neighbours.

I Conversely, in a non-barycentric embedding, the difference
vector α(Vi)− C between an atom and the centre of mass C of
its neighbours is equal to 1

di
L∗i where di is the degree of Vi.

I Of the different embeddings, the barycentric embedding has the
highest symmetry.



Example: Barycentric embedding of K{3}2

basis for C: b1 = e1 − e2,
b2 = e2 − e3

basis for C∗: b3 = δ(A) = e1 + e2 + e3

cycle-cocycle basis M =

1 −1 0
0 1 −1
1 1 1


from the voltage graph:
α(b1) =

(
1 0

)
, α(b2) =

(
0 1

)
, α(b3) = 0

Determination of the geometry of the lattice

M ·MT =

 2 −1 0
−1 2 0
0 0 3


shows that b1, b2 form the basis of a hexagonal lattice.



Basis transformation

M ·

α(e1)
α(e2)
α(e3)

 =

α(b1)
α(b2)
α(b3)

⇒
α(e1)
α(e2)
α(e3)

 = M−1 ·

α(b1)
α(b2)
α(b3)


where α(bi) can be read off the voltage graph.

Embedding of the edges

M−1 =

1 −1 0
0 1 −1
1 1 1

−1 =
1

3

 2 1 1
−1 1 1
−1 −2 1


α(e1)
α(e2)
α(e3)

 =
1

3

 2 1 1
−1 1 1
−1 −2 1

 ·
1 0

0 1
0 0

 =
1

3

 2 1
−1 1
−1 −2


i.e. α(e1) =

(
2
3

1
3

)
, α(e2) =

(
− 1

3
1
3

)
, α(e3) =

(
− 1

3 − 2
3

)
.



Determination of the vertices

Choosing A at the origin, we obtain

α(B) = α(e2) =
(
− 1

3
1
3

)
and the other two vertices in the orbit of B
incident to A are at
α(e1) =

(
2
3

1
3

)
and α(e3) =

(
− 1

3 − 2
3

)



Determination of the point and space group type
Automorphisms of the voltage graph induce an
action on the cycles and on the corresponding
translations:
σ1 = (e1, e2, e3):
e1 − e2 7→ e2 − e3 ⇒ 10 7→ 01
e2 − e3 7→ e3 − e1 ⇒ 01 7→ 1̄1̄

⇒ R(σ1) =

(
0 −1
1 −1

)
(3-fold rotation)

σ2 = (e1, e3):
e1 − e2 7→ e3 − e2 ⇒ 10 7→ 01̄
e2 − e3 7→ e2 − e1 ⇒ 01 7→ 1̄0

⇒ R(σ2) =

(
0 −1
−1 0

)
(reflection)

σ3 = (e1,−e1)(e2,−e2)(e3,−e3):
e1 − e2 7→ −e1 + e2 ⇒ 10 7→ 1̄0
e2 − e3 7→ −e2 + e3 ⇒ 01 7→ 01̄

⇒ R(σ3) =

(
−1 0
0 −1

)
(2-fold rotation)

⇒ point group of type 6mm.
⇒ space group of type p6mm.



Example: Barycentric embedding of K4

basis for C:
b1 = e1 + e4 − e5,
b2 = e2 + e5 − e6,
b3 = e3 − e4 + e6

basis for C∗: b4 = δ(A), b5 = δ(B), b6 = δ(C)

from the voltage graph: α(b1) =
(
1 0 0

)
,

α(b2) =
(
0 1 0

)
, α(b3) =

(
0 0 1

)
,

α(b4) = α(b5) = α(b6) = 0

Determination of the lattice type

M ·MT =


3 −1 −1 0 0 0
−1 3 −1 0 0 0
−1 −1 3 0 0 0
0 0 0 3 −1 −1
0 0 0 −1 3 −1
0 0 0 −1 −1 3


shows that b1, b2, b3 form the basis of a body-centred cubic lattice.



Basis transformation

M ·

α(e1)
...

α(e6)

 =

α(b1)
...

α(b6)

⇒
α(e1)

...
α(e6)

 = M−1 ·

α(b1)
...

α(b6)



Embedding of the edges


1 0 0 1 −1 0
0 1 0 0 1 −1
0 0 1 −1 0 1
1 0 −1 −1 0 0
−1 1 0 0 −1 0
0 −1 1 0 0 −1



−1

·


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

 =
1

4


2 1 1
1 2 1
1 1 2
1 0 −1
−1 1 0
0 −1 1


i.e. α(e1) =

(
1
2

1
4

1
4

)
, α(e2) =

(
1
4

1
2

1
4

)
, . . . , α(e6) =

(
0 − 1

4
1
4

)
with respect to the primitive basis of the body-centred cubic lattice.



Determination of the vertices
Choosing D at the origin, we obtain

α(A) = α(e4) =
(
1
4 0 − 1

4

)
α(B) = α(e5) =

(
− 1

4
1
4 0

)
α(C) = α(e6) =

(
0 − 1

4
1
4

)
with respect to the primitive basis of the body-
centred cubic lattice.

Transforming this to the primitive cubic basis by the centring matrix

W = 1
2

−1 1 1
1 −1 1
1 1 −1

 gives

α(A)
α(B)
α(C)

 ·W =

− 1
4 0 1

4
1
4 − 1

4 0
0 1

4 − 1
4





Determination of the point group type
Automorphisms of K4 induce an action on the
cycles and on the corresponding translations.
σ1 = (A,B,C,D):
e1 − e5 + e4 7→ e2 + e3 + e1 ⇒ 100 7→ 111
e2 − e6 + e5 7→ −e6 + e4 − e3 ⇒ 010 7→ 001̄
e3 − e4 + e6 7→ −e5 − e1 − e4 ⇒ 001 7→ 1̄00

⇒ R(σ1) =

1 0 −1
1 0 0
1 −1 0

 (4-fold rotation)

σ2 = (A,B,C)⇒ R(σ2) =

0 0 1
1 0 0
0 1 0

 (3-fold rotation)

σ3 = (A,B)⇒ R(σ3) =

−1 0 0
0 0 −1
0 −1 0

 (2-fold rotation)

⇒ point group of type 432.

Body-centred cubic lattice⇒ symmetry group of the embedding
belongs to the arithmetic class 432I.



Finding the intrinsic translation part

I For a crystallographic symmetry operation {R | t} with linear part
R of order k and translation part t, {R | t}k is a pure translation
(possibly zero) of the form {I | tk} and 1

k tk is called the intrinsic
translation part of {R | t}.

I tk = t+Rt+R2t+ . . .+Rk−1t is the sum over the orbit of t
under the cyclic group generated by R.

I Since {R | t} maps the origin to t, one has to compute the orbit
of a walk from the origin to its image:
let V be the origin and let w be a walk from V to σ(V ), then
w + σ(w) + . . .+ σk−1(w) is the cycle corresponding to tk.



Determination of the space group type

I Choose D as origin and consider σ = σ1 = (A,B,C,D), then
σ(D) = A and e4 is a walk from D to σ(D).

I Orbit of e4: e4, e1, e2, −e6 ⇒ the cycle corresponding to σ4 is
e1 + e2 + e4 − e6.

I This cycle has voltage 110⇒ σ is a 4-fold screw rotation with
axis along 110.

I Conclusion: space group type is I4132.



Exercise: Barycentric embedding
A

B C
e5

e1
10

e2

e4
01

e3

For the voltage graph given above, determine a two-dimensional
barycentric embedding.

I It is a good idea to put A at the origin.
I To invert a 5× 5-matrix, you may use any convenient tool (or ask

the lecturer for assistance with a computer algebra system).



Solution: Barycentric embedding
A

B C
e5

e1
10

e2

e4
01

e3

The cycle-cocycle matrix M was already determined in a previous

exercise as M =


1 −1 0 0 0
0 0 −1 1 0
0 1 −1 0 1
1 1 1 1 0
−1 −1 0 0 1

.

Note that the cycle b3 = e2 − e3 + e5 has zero voltage, hence the

embedding of the edges is M−1 ·


1 0
0 1
0 0
0 0
0 0

 = 1
8


5 −1
−3 −1
−1 −3
−1 5
2 −2

.



Solution: Barycentric embedding (ctd.)

Choosing A at the origin, B is at α(e2) =
(
− 3

8 − 1
8

)
and C at

α(e3) =
(
− 1

8 − 3
8

)
.

A

B C
e5

e1
10

e2

e4
01

e3

A

BC

b1 b2



Integral embeddings

I The integral embedding of a minimal net is an embedding into
Rm which assigns the standard basis vectors of Rm to the edges
of the quotient graph of the minimal net.

I Usually, the voltages of an integral embedding are not given
explicitly, since different assignments only differ by a permutation
of the basis vectors of Rm.

I Since the periodicity of a minimal net is equal to its cyclomatic
number m− n+ 1 ≤ m, the integral embedding is usually
subperiodic, with finite extension along the cocycle space.

I Integral embeddings can thus be regarded as generalisations of
layer structures.

I The main application of integral embeddings is to construct nets
as quotients of the minimal net.



The hexagonal net as a projection of a minimal net

100

010 001 1̄1̄0

quotient graph of cubic net

I Forming the quotient graph with respect to the subgroup
generated by the translation by 111 is equivalent with replacing
the voltage 001 by 1̄1̄0 (and disregarding the third component of
the voltages).

I The resulting net is the hexagonal net, obtained as projection of
the cubic net along the 111 direction.



Example: Barycentric embedding of 4.82 by projection

basis for C:
b1 = e3 − e4 + e6,
b2 = e2 + e5 − e6,
b3 = e1 + e2 + e4 − e6

b3 has zero voltage⇒ embedding is orthogo-
nal projection along b3.
Adjust b1, b2 such that they are perpendicular
to b3: b′1 = 2b1 + b3, b′2 = 2b2 − b3.

basis for C∗:
b4 = δ(A) = e1 − e3 − e4,
b5 = δ(B) = −e1 + e2 − e5,
b6 = δ(C) = −e2 + e3 − e6

M =


1 1 2 −1 0 1
−1 1 0 −1 2 −1
1 1 0 1 0 −1
1 0 −1 −1 0 0
−1 1 0 0 −1 0
0 −1 1 0 0 −1

 and b′1 · b′1 = b′2 · b′2 = 8 and

b′1 · b′2 = 0 shows that b′1, b′2 form the basis of a square lattice.



Embedding of the edges

M−1 ·


2 0
0 2
0 0
0 0
0 0
0 0

 =
1

4


1 −1
1 1
2 0
−1 −1
0 2
1 −1



Determination of the vertices

Choosing D at the origin, we obtain

α(A) = α(e4) =
(
− 1

4 − 1
4

)
α(B) = α(e1 + e4) =

(
0 − 1

2

)
α(C) = α(e6) =

(
1
4 − 1

4

)



Embedding of 4.82

α(A) =
(
− 1

4 − 1
4

)
α(B) =

(
0 − 1

2

)
α(C) =

(
1
4 − 1

4

)
α(D) =

(
0 0

)



Determination of the point group type
Only those automorphisms of K4 are admis-
sible that map the kernel of the projection,
spanned by e1 + e2 + e4 − e6, to itself.

σ1 = (A,B,C,D):
e3 − e4 + e6 7→ −e1 − e4 + e5 ⇒ 10 7→ 01
−e1 − e4 + e5 7→ −e1 − e2 − e3 ⇒ 01 7→ 1̄0

⇒ R(σ1) =

(
0 −1
1 0

)
(4-fold rotation)

σ2 = (A,C):
e3 − e4 + e6 7→ −e3 + e4 − e6 ⇒ 10 7→ 1̄0
−e1 − e4 + e5 7→ e2 + e5 − e6 ⇒ 01 7→ 01

⇒ R(σ2) =

(
−1 0
0 1

)
(reflection)

⇒ point group of type 4mm.



Addendum to barycentric embedding exercise
A

B C
e5

e1
10

e2

e4
01

e3

Zero voltage cycle b3 =
(
0 1 −1 0 1

)
is

the kernel of the projection
⇒ basis cycles b1 =

(
1 −1 0 0 0

)
and

b2 =
(
0 0 −1 1 0

)
have to be adjusted

to become orthogonal to b3.

b3 · b3 = 3, b1 · b3 = −1, b2 · b3 = 1

⇒ b′1 = 3b1 + b3 =
(
3 −2 −1 0 1

)
b′2 = 3b2 − b3 =

(
0 −1 −2 3 −1

)
⇒ centred rectangular lattice with

](b′1, b
′
2) ≈ 78.5◦

A

BC

b′1 b′2

Point group is of type pm, since only (B,C)(e1, e4)(e2, e3)(e5,−e5)
preserves the kernel of the projection.



Exercise: Barycentric embedding by projection

For the voltage graph given above, determine a two-dimensional
barycentric embedding.

I The direction of projection is determined by a cycle with zero
voltage.

I To determine the type of the lattice, make sure to use a basis of
the translation lattice that is orthogonal to the direction of
projection.

I Also determine the type of the point group and of the plane group
of this embedding.



Solution: Barycentric embedding by projection

M =


−1 0 0 −1 1 0
0 −1 0 0 −1 1
0 0 1 −1 0 1
1 0 −1 −1 0 0
−1 1 0 0 −1 0
0 −1 1 0 0 −1



M−1 ·


1 0
0 1
0 0
0 0
0 0
0 0

 =
1

4


−2 −1
−1 −2
−1 −1
−1 0
1 −1
0 1


Choosing B at the origin gives
D at α(−e5) =

(
− 1

4
1
4

)
,

A at α(−e5 + e4) =
(
− 1

2
1
4

)
,

B at α(−e5 + e6) =
(
− 1

4
1
2

)
.



Solution: Barycentric embedding by projection (ctd.)

Adjusting the lattice basis: b3 · b3 = 3, b1 · b3 = 1, b2 · b3 = 1
⇒ b′1 = 3b1 − b3, b′2 = 3b2 − b3, ](b′1, b

′
2) = 120◦

σ1 = (A,D,C): ADBA 7→ DCBD
BDCB 7→ BCAB

⇒ R(σ1) =

(
0 −1
1 −1

)
σ2 = (A,C): ADBA 7→ CDBC

BDCB 7→ BDAB
⇒ R(σ2) =

(
0 −1
−1 0

)
Point group of type 3m, plane group of type p3m1.


