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The first part of the manuscript is devoted to a specific derivation of the irreducible
representations (irreps) of the crystallographic point groups and space groups of 3-
dimensional space. Following this procedure the readers should be able to derive these
irreps themselves if necessary. Because of the restricted time and the practical goal of
the school basic facts and theorems on representation theory could be only mentioned
without proofs. For further studies the reader is referred to the literature given in the
References.

After a brief introduction to crystallographic groups and their representations in the
first two chapters, a general induction procedure for the derivation of the irreps of the
crystallographic point groups is discussed in details in Chapter 3. The application of
the same procedure for the derivation of the irreps of the crystallographic space groups
is analyzed and demonstrated in the next Chapter 4. The accompanying exercises and
the necessary data for the exercises like character tables of irreps, multiplication tables,
etc. can be found in the last two chapters of Part I.

A Table of Contents and an Index will help the reader when studying the manuscript.
A list of abbreviations and a list of symbols are also included.

The treatment of the irreps of one- and two-dimensional point and space groups is
included in the treatment of the three-dimensional point and space groups because
all groups of lower dimensions are represented under those of three dimensions. In
four dimensions, however, there are point and space groups whose irreps can not be
obtained by applying the methods used here. The icosahedral group which occurs
in crystallographic point groups and thus in space groups of four dimensions is not
a solvable group and, therefore, needs other procedures for the determination of its
irreps.

This Part I of the manuscript is a slight modification of the lecture notes written
by the authors for the course on Darstellungen der kristallographischen Punkt- und
Raumgruppen, Hiinfeld, 2000.



Chapter 1
Crystallographic point groups

In this chapter the group-theoretical aspect of the crystallographic point groups in
three dimensions will be considered. Elementary notions of group theory are defined
in the first section. They will be needed later. The crystallographic point groups are
analyzed in the light of these definitions in the second section.

It is assumed that the reader is familiar with the crystallographic view of the point
groups as groups of either the external shape and physical properties of macroscopic
crystals or of the local symmetry in the crystal structure (site-symmetry groups). This
includes a working knowledge of the Hermann-Mauguin (HM) and Schoenflies symbols
of the point groups.

1.1 Special notions and results from group theory

In this section group-theoretical constructions and special types of groups are described
which play a role for the irreps of the crystallographic point groups. The book of W.
Ledermann is recommended.

e Conjugacy, subgroups, coset decomposition, and their consequences

Let G be a finite group and g, € G be the elements of G. The set of all elements
g; = g.lg. g, g, running through the group G, is called the conjugacy class
of g,. Elements of the same conjugacy class are called conjugate. The size of
each conjugacy class, i. e. the number of its elements, divides the group order.
Elements of the same conjugacy class have the same order. The unit element e
forms always a conjugacy class for itself.

Let G be a finite group and U= {g, € G, r =1, ... s} a subset of elements of
G which fulfill the group postulates for themselves. Then U is called a subgroup
U<g.

Let G be a finite group and U < G a subgroup of G. Then G can be decomposed
into left cosets relative to U: G=g,UUg,UU ... Ug;U,

where g, = e, gy, ..., g; are elements of G such that g; does not occur in a

coset of g, with k # j. The elements g, are called the representatives of their
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cosets g;U. Any element g,u € g;U, u € U may represent the coset g;U. All
cosets have the same number of elements as U has, and different cosets have no
element in common. The number i of cosets is called the index |G : U] of U in
G. Only the first coset, i. e. the subgroup itself, forms a subgroup of G.

The decomposition can be made also from the right side (decomposition into
right cosets): G=UUUg,U ... UUg,.

Let G be a finite group and U < G a subgroup of G. Then V = g 'l g is a
subgroup of G and is called conjugate to U. The set of all subgroups of G which
is obtained when g runs through G is called the conjugacy class of U.

If U is mapped onto itself by all elements of G, g 'U g, = U for all g, € G, then
U is called a normal subgroup or invariant subgroup U of G: U <1G. For a normal
subgroup, right and left cosets are the same.

Lemma 1.1.1 If A/ < G, then N contains with each element g also the full
conjugacy class of g.

Normal subgroups play an important role if the homomorphic mapping of a group
G onto a group F is considered.

Lemma 1.1.2 In a homomorphic mapping of a group G onto a group F, a normal
subgroup N <1 G is mapped onto the unit element e € F, and all elements of
a coset of G relative to N are mapped onto one element f; € F. Elements
of different cosets are mapped on different elements f; € F. The set of cosets
relative to N forms a group which is isomorphic to F and is called the factor
group or quotient group G/N of G by N.

e Cyclic groups

In the following definition we make use of the abbreviation customary for prod-
ucts of identical group elements: gg = g2, g2g = gg> =g°, g'g" =gfg' =
gtk If n is the smallest positive integer for which g" = e holds, e the unit
element, then n is called the order of the element g, and one writes also g=¢ for
gnfz'

Definition (D 1.1.1) Let G be a group and g € G an element of order n. The
set O, ={g =81, 8°=8y &8 =83,..., 8 ' =g " =g,.1, 8" = e} is called
the cyclic group of order n, generated by g.

Because of the validity of the associative law for the multiplication in the group,
cyclic groups are always commutative: g, g, = g, &,;- According to Table 1.2.1

there are five cyclic abstract groups to which ten crystal classes of point groups
belong: Cq, Cs, C3, Cy4, and Cg.

e Abelian groups

Definition (D 1.1.2) A group G is called an Abelian group if for all pairs of
elements g;, g, € G the relation g; g, = g, g; holds.
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Cyclic groups are always Abelian groups but not all Abelian groups are cyclic.
There are four non-cyclic Abelian groups to which six of the 32 crystal classes
belong, cf. Table 1.2.1 on p. 10: Dy, Day, Cyp, and Cegp.

To get an overview over the structure of the Abelian groups one uses the concept
of the direct product.

Definition (D 1.1.3) A group G is called the direct product of its subgroups U
and V, G=UxV if

1. U <G and V < G are normal subgroups of G.

2. Every element g € G can be written as a product of an element v of U and
vof V: g=uv.

3. The intersection of U/ and V is the unit element e of G: U NV = e.
Equivalent to condition 1. is condition 1la:

la. For each pair of elements u € U and v € V the commutative law holds, i. e.
uv =vu (U and V need not be Abelian groups).

Remark. If g = v v, then the elements v € U and v € V are uniquely determined.

Lemma 1.1.3 Basic Theorem for Abelian groups. Every finite Abelian group G
is the direct product of cyclic subgroups. The order of G is the product of the
orders of the cyclic subgroups.

In Table 1.2.1 the Abelian groups Ds, Da, C4pn, and Cg, are written as the
products of their cyclic factors. These factors are either the group Cs or the
group Cs, the cyclic groups of order 2 or 3.

Also non-Abelian groups can be direct products. According to Table 1.2.1 the
groups D¢, Dun, Den, Tr, and Oy, are direct products, which are isomorphic to
crystallographic groups. In all these cases one of the factors is Cs.

e Solvable groups

Abelian groups and the remaining groups D3, D4, T, and O, i.e. all abstract
groups of crystallographic point groups are solvable groups.

Definition (D 1.1.4) A group G is called a solvable group or a soluble group if
a series of subgroups H; exists

GoHi> - DHpaDH, =T,

such that the factor groups H;/H;.1 of the pairs Hi <G, Hs <H 1, ete. are cyclic
groups of prime order.

In this series which is called a composition series each of the subgroups H; is a
normal subgroup of the group H;_; but not necessarily of the groups H; with
k < i — 1. In particular, H;, ¢ > 1, need not be a normal subgroup of G. The
group Z (identity group) is the group consisting of the unit element e only.
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The relations between those abstract groups which are relevant for the three-
dimensional point groups are displayed in the diagrams Fig. 1.1.1 and Fig. 1.1.2.
One takes from these diagrams that the corresponding non-Abelian groups have the
following composition series:

D3>Cs3>1; Dy>Cy>Co>1; T>Dy>Cor>Z; and O>T>Dy>Co>T.

Important for the calculation of the irreps in the next chapter is the observation that
all factor groups in these series have orders 2 or 3, i. e. are cyclic groups of orders 2
and 3.

The generation of the abstract groups by composition series is displayed in Figs. 1.1.1
and 1.1.2. Each line connects a group - normal subgroup pair; each dashed arrow
points to the direct product of the subgroup with the group C,. The number at
the line is the index of the normal subgroup, i.e. the order of the factor group.
The lines in [ ...] are not necessary because they are contained in the framework:
Ci ~ Cay, Cop ~ Dy, C3; ~ Cg, and D3y ~ Dg. However, they make easier the transition
to the corresponding diagrams 1.2.1 and 1.2.2.

Fig. 1.1.1 Generation of sub-cubic abstract groups, see Tab. 1.2.2

2
T~ T
D, =--mn-
2 an Dy
2
Dop=--- D, Cop= Cy
2
\ /
[Con=——-] C2
‘2
[C| T ] Cq

Fig. 1.1.2 Generation of sub-hexagonal abstract groups, see Tab. 1.2.3
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1.2 Crystallographic point-groups and abstract groups

In this section we describe shortly the relation of the point groups to their abstract
groups. There are four kinds of abstract groups:

Cyclic groups

Abelian non-cyclic groups

non-Abelian groups

- direct products of non-Abelian groups with the cyclic group of order 2.

The types of crystallographic point groups, i. e. the crystal classes, are distinguished
by the geometric meaning of their groups of symmetry operations of the macroscopic
crystals. In algebraic terms, the classification principle is the affine equivalence of
matrix groups, c¢f. IT A, Section 8.2.3. In this respect, an inversion, a two-fold
rotation, and a reflection are clearly to be distinguished. However, considered as
groups together with the identity operation, these three symmetries belong to the
same type of groups, also called the same abstract group, which is here "Cs, the cyclic
group of order 2”. Isomorphic point groups may belong to different crystal classes but
point groups of the same crystal class belong always to the same abstract group, 1. e.
are isomorphic.

The representations of the groups are properties of the abstract groups. Therefore,
isomorphic point groups, . e. point groups belonging to the same abstract group, have
the same irreps. Instead of the 32 types of point groups or crystal classes, only 18
different abstract groups have to be distinguished. In Table 1.2.1 the classification
of the 32 crystal classes into 18 abstract groups is displayed. In order to be able to
distinguish the symbols for crystallographic point groups from those of the abstract
groups, the crystallographic point groups are designated by their HM symbols; the
corresponding abstract groups by Schoenflies symbols. These symbols are assumed to
be known; they can be found in IT A or in any textbook of crystallography.

The derivation of the 32 crystal classes can be found in many textbooks, either by
geometric, e. g. Buerger (1956), or by a mixture of geometric and algebraic arguments,
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e.g. Burckhardt (1966), Rigault (1980). The crystal classes and their irreducible
representations (irreps) can be easily determined once the 18 abstract groups and

their irreps are known.

Table 1.2.1 The crystallographic point groups as abstract groups

Symbol order HM symbols
Cq 1 1
Cy 2 2,m, 1
Cs 3 3
C, 4 4.1
Ce =C3 x Cy 6 3,6,6
Dy =Cy x Co 4 2/m, 222, mm?2
D5 6 32, 3m
D, 8 422, 4mm, 42m
Ds = D5 x Cy 12 3m, 622, 6mm, 62m
Dy, =Cy X Cy X Co 8 mmm
Can =Cy x Cy 8  4/m
Cen =Cs X Co 12 6/m
Dy, =Dy x Cy 16 4/mmm
Do, = Dg x Co 24 6/mmm
T 12 23
Th=T x Cs 24 m3
6] 94 432, 43m
O0,=0 x Cy 48 m3m

First column: Schoenflies symbol for the abstract group: C cyclic group; D dihedral

group;

T tetrahedral group; O octahedral group. ‘x’ means ‘direct product’

Second column: group order
Third column: short Hermann-Mauguin symbols of the crystallographic point groups

The following diagrams correspond to the Figures 1.1.1 and 1.1.2. A solid line connects
a pair group — normal subgroup; a horizontal dashed arrow to the left points from the

subgroup to the direct product with 1. The symbols at the solid lines are those of

the generators which generate the group from the normal subgroup. Because of its
importance for the derivation of the irreps, this kind of generation is also described in

Tables 1.2.2 and 1.2.3.
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Fig. 1.2.1 Generation of sub-cubic point groups, see Tab. 1.2.2

m3m =------- 432 (43m)

‘ 2 110
m3—------ 23
4/mmm < 422 (4mm,42m)
3lll
2110
mmm <------ 222 (mm?2) 4m <o 4 (4)
X %
2l 2(m)
22
1= 1

Fig. 1.2.2 Generation of sub-hexagonal point groups, see Tab. 1.2.3

6/mmm <------- 622 (6mm_ 62m)
2110
3M oo 32(3m) 6/m <------ 6 (6)
x 2,
33
3

11
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Table 1.2.2 The generation of the crystallographic point groups I
HM Symbol SchoeSy generators compos. series
1 C1 1 1
1 C; 1,1 I>1
2 Cs 1,2 21> 1
m Cs 1, m mp>1
2/m Con 1,2, 1 2/mp>2p>1
222 Dy 1,2.,2, 2221>21> 1
mm?2 Cop 1,2,,my mm2>20> 1
mmm Doy, 1,2,,2,1 mmm > 222> ...
Cy 1,2,,4 4>2p>1
4 Sy 1,2,,4 4>2p>1
4/m Cun 1,2,,4,1 4/m>4r>
4221)4 ........ 1’2Z’4’2y ................. 422>4> .......
4dmm Cao 1,2, 4, my dmm >4 ...
12m Do 1,2,,4,2, L2m> 4> ...
4/mmm Dy 1,2,,4,2, 1 4/mmm>4221> ...
23 T 1, 2., 2, 3111 231> 222> ...
m3 Th 1, 2,, 2y, 3111,1 m3>230> ...
432 ....... (9 ......... 1 7227 2y7311172110 ......... 432>23> .. .. ......
43m Ta 1, 2., 2y, 3111, Mg 3m>231> ...
m3m Oy, 1, 2,, 2y, 3111, 2110, 1 m3m>432 1> ...

Composition series of point group m3m and its subgroups, see also Fig. 1.2.1. For the longer
composition series only the first members are listed. The complete series can be composed
step by step using the previous composition series.
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Table 1.2.3 The generation of the crystallographic point groups II
HM Symbol SchoeSy generators compos. series
1 Cq 1 1
3 Cs 1,3 3> 1
3 Se 1,3,1 3>3p>1
..... 3 21)31,3’211032>3>1
3m Csv 1, 3, mi10 3mp>3>1
3m Dsq 1, 3, 2110, 1 3Im>320> ...
6 Co 1,3, 2, 6>30>1
6 Csn 1, 3, m, 631
6/m Con 1,2,2,,1 6/m> 60>
622 ....... D6 ........ 1’ 3’2z, 2110 .......... 6 22 >6 D .......
6mm Cev 1, 3, 2., mi10 6mm>60r>...
62m D3, 1, 3, m., 2110 62m > 61> ...
6/mmm  Dg, 1,3, 2., 2110, 1 6/mmm> 622> . ..

Composition series of point group 6/mmm and its subgroups, see also Fig. 1.2.2. For the
longer composition series only the first members are listed. The complete series can be
composed step by step using the previous composition series.

The composition series of Tables 1.2.2 and 1.2.3 seem to be natural but often they may be
replaced by other composition series.

[ | Examples.

2/m > 21> 1 may be replaced by 2/m >m>1 or by 2/m > 1> 1;

4/m > 41> 21> 1 may be replaced by 4/m > 2/m > 2> 1;

dmm > 4> 2> 1 may be replaced by 4mm > mm2 > m > 1;

622 > 6 > 3 > 1 may be replaced by 622 > 32> 3> 1;

6/mmm > 622 > 6 > 3 > 1 may be replaced by 6/mmm > 62m > 3m > 3 > 1; etc. [ |



Chapter 2

The irreps of the crystallographic
point groups

In this chapter the representations of the crystallographic point groups are dealt with.
Basic definitions and lemmata of the representation theory of finite groups are pre-
sented in Section 2.1. Section 2.2 contains the derivation of the irreps of cyclic and
non-cyclic Abelian groups. In Section 2.3 the direct products of Cy with the ‘basic’
groups of Section 2.4 are dealt with. The procedure for the derivation of the irreps of
these basic groups D3, Dy, T, and O is found in Chapter 3.

2.1 Representations

Definition (D 2.1.1) A group H of concrete elements (mappings, permutations,
matrices, etc.) is called a representation D (sensu lato) of the (abstract) group G if H
is a homomorphic image of G. A representation is called faithful if the homomorphism
is one-to-one, . e. is an isomorphism.

] Example. The 24 symmetry operations of a regular tetrahedron, the 24 permu-
tations of its 4 vertices, and the 24 matrices of the ‘general position’ of space group
P43m, No. 215 of IT A are faithful representations of the group 7, the ‘tetrahedral
group’. ]

If the elements are matrices with the combination law of matrix multiplication then
the representation is called a representation (sensu stricto) or simply ‘representation’
and is here abbreviated as rep. Only such reps by matrices are dealt with in this
manuscript.

The rank of the matrices is called the dimension of the rep.

For convenience we repeat 3 important properties of reps:

1. Let G be a group and H arep of G. If g, — hy,, g, — hn, and g,, 8, = &n —
hpn, then hy, h, = h,,, for all g,., g,, € G, 7. e. the product of the images is equal
to the image of the product.

2. A normal subgroup of G, called the kernel K <G is mapped onto the unit element
ecH.

14
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3. The group H is a faithful rep of the factor group G/K but not necessarily iso-
morphic to a subgroup of G.

Lemma 2.1.1 A rep of every group G is the identity rep which assigns the (one-
dimensional matrix) 1 to each element of G. It is also called the ‘trivial rep’.

2.1.1 Matrices

A matrix rep forms a group. Therefore, its matrices A are regular square matrices

with finite orders and |det A| = 1. An example for a matrix of infinite order is
11

B = .
01

Definition (D 2.1.2) Equivalent matrices. Two matrices A and B are called

equivalent if there is a regular matrix X with X ' A X = B.

By this definition the set of all regular matrices is distributed to equivalence classes.
Equivalent matrices have the same order and the same eigenvalues, in particular the
same trace and determinant. One can understand equivalent matrices as different
descriptions of the same mapping but referred to different bases. Therefore, they are
considered not to be essentially different.

Definition (D  2.1.3) A matrix A is called reducible if

. . . . R, S
it is equivalent to a matrix of  the form .
O R,

It is called fully reducible if § = O is the matrix consisting only
of zeroes.

Lemma 2.1.2 Any matrix of finite order is fully reducible to components of dimension
1.

11
[ ] Example.The matrix B = ( 01 ) is reduced but is not fully reducible (proof
7).

This is no contradiction because B is of infinite order. [ ]

2.1.2 General remarks on representations

Every group G has infinitely many reps. How can one get an overview on them ?

In the same way as for matrices the concepts: equivalent, reducible, and fully reducible
can be defined also for sets of matrices, including matrix groups. Here only the def-
inition for the equivalence of reps of groups is formulated. The other definitions are
analogous.

Definition (D 2.1.4) Equivalent reps. Two reps DU and D@ of a group G
are called equivalent if there is a regular matrix X which transforms the matrices
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Ai(g,) € DY simultaneously to Ay(g,) € D®: X' Ai(g,) X = Ay(g,) for all
elements g, € G.

One can understand equivalent reps as different descriptions of the same group of
mappings but referred to different bases. Therefore, they are considered not to be
essentially different.

Lemma 2.1.3 Each rep of a finite group is equivalent to a rep by unitary matrices.

Other than a single matrix, a rep is not necessarily reducible or fully reducible to
components of dimension 1.

Definition (D 2.1.5) A set of matrices is called irreducible if it is neither reducible
or fully reducible.

Lemma 2.1.4 Each rep of a finite group is either fully reducible or irreducible. A rep
D which is fully reduced into the reps DU with matrices {D®(g,)} and D® with
matrices {D?(g,)} is called the direct sum DY @& D® of the reps DY and D@,
With D also DY and D@ are reps of G.

The reduction can be continued until D is fully reduced into irreducible constituents
D®. Then the number n of irreducible constituents in D is called the length of the
reduction. The number of occurences of an irreducible constituent D in the reduction
of D is called its multiplicity m;. Different reductions of a rep have the same length,
the same irreducible constituents up to the sequence and equivalence, and the same
multiplicities. A fully reducible rep is determined by its irreducible constituents up to
equivalence.

2.1.3 Irreducible representations (irreps)

The number of irreps of a finite group is relatively small; it is strongly restricted by
two lemmata which here can be only stated. They are more extensively dealt with in
DP.

Lemma 2.1.5 The number of different irreps of a group G is equal to the number of
conjugacy classes of G.

The immediate consequence of this lemma is:

1. The number of irreps of an Abelian group G is equal to the order of G because
each element g € G forms a conjugacy class for itself.

2. The number of irreps of a non-Abelian group G is smaller than the order of G.

Lemma 2.1.6 The sum of the squares of the dimensions of the different irreps of a
group G is equal to the order of the group: |G| =n? +n3+ ... n?

e

For small group orders |G| these two lemmata determine the number and the dimen-
sions of the irreps uniquely. However, the 10 irreps of the group O x Csy of order 48
might be of dimensions 6+2+14+1+1+14+14+1+14+10r 5+34+2+2+1+14+1+1+141
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ord+4+3+14+1+1+14+1+1+10rd+3+2+24+2+24+2+1+1+1o0r
3+3+3+3+2+2+1+1+1+1 if the structure of the group is not taken into
consideration.

A number of crystallographic point groups are direct products of groups, see Table
1.2.1 on p. 10. For the construction of their irreps, the following theorem is very
useful.

Lemma 2.1.7 The irreps D% (G) of the direct product of two groups G = H; x
Hs, can be constructed from the irreps D% (H;) and DY (#,) in the following way:
D)(G) = DV(H,) ® DY (H,), with the elements D) (g),ps = DO (A1) DY) (hy)gs
where g = hy hy. The indices p and r run from 1 to dim(D¥(#,)); the indices ¢ and
s run from 1 to dim(DY(#5)). Thus, the dimension of the irrep of G is equal to the

product of the dimensions of the irreps of H; and H,. All irreps of G are obtained in
this way if D) (#;) and DY) (H,) run through all irreps of H; and H,.

| Example. The direct product (or Kronecker product) A @ B of the two
0 1 0 0 -1
matrices A = ( Lo ) and B=]11 0 0 can be expressed by the
0 -10 00 00 01
0 0 0]-100
0B (-1)B 0 0 0|0 10
super matriz A® B = (=1) = . m
1B 0B 0 0 =110 00
1 0 0 00
0 —1 0 00

2.2 The irreps of Abelian groups

Because finite Abelian groups are either cyclic groups or isomorphic to direct products
of cyclic groups, see lemma 1.1.3 on p. 7, their irreps can be easily determined, once
the irreps of the cyclic groups are known.

2.2.1 The irreps of cyclic groups

Lemma 2.2.1 The n irreps of a cyclic group C,, = (g) = {e, g, g%, ... , g" '} are
given by the formula D% (g™) = [exp(27i (p—1)/n)]™ = exp(2mwim(p—1)/n), m, p =
1, 2, ... .n.

Crystallographic examples are C1, Co,C3, Cy4, and Cg.

[ | Examples.

Ci|e
The group table for C; is trivial. From it the table of irreps : n results.
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Cyle a Co e a

The group table for Co is | e |e a|; the table of irreps is | D)
ala e D? |1 -1

The irrep D is called A, the irrep D is B, see Altmann & Herzig (1994). [ ]

2.2.2 The irreps of direct products of cyclic groups

According to lemma 1.1.3, each Abelian group is the direct product of cyclic groups.
Because the irreps of cyclic group are one-dimensional, the formula for the direct
product of irreps in lemma 2.1.7 simplifies considerably. Consider G = C, ® Cs, where
C, = (a) and C; = (b) are cyclic groups of orders r and s. Then the irreps of the
generators of group G are given by

D) (a, e) = [exp 2mi(p —1)/r] and D®? (e, b) = [exp 2mi (g — 1)/5]

which are obtained from the general element
DP9 (g™ p") = [exp 2mi (p— 1) /7)™ [exp 2mi (¢ —1)/s]" of G by n = s and m = r.

The general element DP9 (a™, b") can be expressed by

exp 2rim(p—1)/rexp2rin(q—1)/s=exp 2ri(m(p—1)/r + n(q¢—1)/s),
where m, p=1, ... ;,randn,q=1, ... ,s.

As a simple illustration of this general result one can consider the irreps of the group
D, = C; x Cy. Its irreps will be dealt with in an exercise.

2.3 The irreps of direct products with the group C,

All point groups which are direct products and play a role in 3-dimensional crystal-
lography are direct products with the group Cs, see Table 1.2.1 on p. 10. As we have
seen, the group Cy has two 1-dimensional irreps with coefficients +1.

Let G = H x Cy and DY () be the irreps of H. H x Cy ‘ Y e U a
Then, each irrep DY) of H gives rise to two irreps DO+ | pi)  pw
of G which are often designated by DY+ and DV~ : ,
or DV9 and DY (g’ = gerade; ‘u’ = ungerade).

DY~ | p» _p®

Examples: irreps of centrosymmetric groups, see Figs. 1.2.1 and 1.2.2.
2.4 The irreps of solvable non-Abelian groups

The irreps of crystallographic non-Abelian groups are well known and treated in many
books on representation theory. The general approach for their determination is based
on the theory of characters.
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In the present manuscript the irreps of the non-Abelian groups are derived in Chapter
3 using a procedure which is based on the solvability of the crystallographic groups.
For convenience, we list generating matrices for the irreps of dimension larger than
one of the groups D3, Dy, T, and O in the conventional crystallographic bases.

—1 1
Dy = 3m=31m; D® =E: 38f = X Y 0 ,
1 -1 10

Referred to a Cartesian basis, the matrices of the 2-dimensional irrep of the group Ds
are generated from

NG e ot _1/2_\/5/2‘777,— 01
o () (01,

-1 0 0 —1 -1 0
Dy=4mm, DO =E: 2, = 4T = DMy, = .
1=4 0 1) H 1 0 v 01
-1 00 10 0
T=23DW=T: 2, = 0 -10|;e2,= N E
0 01 ~1
00 1
8t =110 0
010
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The two-dimensional irrep E of @ consists of the same matrices as D® of Ds. Its
kernel is the subgroup Dy <1 O. Therefore, the generators 2, and 2, are represented
by the unit matrix of D®®. The generator 87, of O replaces the generator 37 of Ds,
and m, of D is replaced by 2,, in group 432 or by m,, in group 43m.

-1 00 -10 0
O=43 DW=TW. 2 = 0 -10|;2,= 01 0 |;
0 01 -1
001 01 0
3f.=1100];2.=[10 o0
010 00 —1
-1 0 -1 0
O=143m, D® =T@ . 2, = 0 -1 0 |; 2,= ;
0 01 -1
001 010
Srzzt =11 0 0 |; myp=|1 0 0
010 00 1



Chapter 3

Further development of
representation theory

3.1 Definitions and general procedure

3.1.1 Subduced and induced representations

Let H be a proper subgroup of a group G: ‘H < G. Given an irrep D(T)(g) of G, one
can construct a rep of H by considering only those matrices of D(T)(g) which belong
to elements of H. This procedure is called subduction.

Definition (D 3.1.1) Consider the set of matrices which form an irrep of G. The set
{D"(g,)} =D")(G) | H, g, € H, is called the representation of H subduced from G.

Remark. The rep {D(g;)} = D™(G) | # of H may be irreducible or reducible.
[ ] Examples.

1. It is trivial to state that any subduced rep of a one-dimensional irrep D<r>(g) is
one-dimensional again and thus irreducible.

2. Let E be the 2-dimensional irrep of the point group 4mm:

_10_2_—10'4_0—1‘4_1_ 0 1Y),

~\o 1)’ B 0 —1 )’ V1 0 ) S\ -1 0)]
<—1 0) (1 0) ( 0-1) <0 1)
0 1 0 —1 1 0 10

For the designation of the reflections, symbols are used which may apply for
dimension 2 as well as for dimension 3: m,, means the reflection in the plane
Oyz or in the line 0y, m,, means the reflection in the plane zxz or in the line zx,
etc.

21
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The subduction to the rep of any subgroup of /mm is reducible
to one-dimensional constituents because any subgroup of Jmm: 4,
MMz 2y MayzMyz 2, ete. is an Abelian group. [

On the other hand, given an irrep D(j)(’H) of H one can construct a rep of G. This
procedure is called induction.

Consider the group-subgroup pair G > H and the coset decomposition of G relative to
H:

G=g HUg,HU ... Ug, H with g, = e. (3.1)
The number 7 of cosets is equal to the index r = |G : H| of H in G.
Let further DY) (%) be an irrep of H of dimension d.

Lemma 3.1.1 The set of (rd x rd) matrices

DY(glgg ), ifgleg, =heH
Dlnd<g)mt,ns:{ (&m &8s T8, 88 (3.2)

0 if g, g8, EH
for all g € G forms a representation of G.

Definition (D 3.1.2) The representation of lemma 3.1.1 of G is called an induced rep
of G.

Remark. The matrix elements of D™"(g) can also be written in the form
D" (g)mtns = M(&)mn DV (h)s,  where g, 'gg, = h. (3:3)

The matrix M (g) is the so-called induction matriz. It consists of zeroes and ones
only and is thus a so-called monomial matriz, having exactly one ‘1’ in the mth row
and nth column, determined by the condition g lgg, = h € H. Correspondingly,
the matrices D™ (g) have block structure with exactly one non-zero block in every
column and every row, where the block is the matrix DY (h), and h is fixed by the
above condition.

Equation 3.2 is sometimes written in the form

D™(g) = M(g) ® DYV (h), (3.4)
where the sign ® is used for the construction in equation 3.4 although the matrix
DY) (h) is different for different positions in M.

In the following example reps of the point group 4mm are induced from the irreps of

point group Imi1 = {1, m,,}.

| Example. Reps of point group 4mm induced from the irreps of point group
Imi1={1, m,,}.

1. Decomposition of 4mm relative to m,.

coset representatives are {1, m,,, 4., and m,z}.
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2. Construction of the induction matrix M (g)

The induction matrix is constructed with the help of the group table of jmm.

Table 3.1.1 Group
table of  group
4mm.

4mm || 1 2, 4. 47 | mg. my, My, My
1 1 2z 4z 4;1 Myy My Mge Myg
2,2 2z 1 4;1 4z My, Mg, Mgz Mgy
4,2 4z 4;1 2z 1 Myy Mgz My, Mg,
404 4 1 2 mg M ma my
My || Mez My, Mgz Mgy 1 2z 4;1 4z
myz myz Mgy Mgy Myzg 2z 1 4z 42_1
Myg || Mgz Mgz Mgy My, 4z 4;;_1 1 2z
Mgz Mgz Mgy myz mg, 42_1 4z 2z 1

23
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The columns of this
table display the dif- g | g, &' glg &g, h= M, #0
ferent 'steps in the g;l g8,

determination of the

1 1 1 1 1 1 My
non-zero elements of
the matrix M and of myz myz myz myz 1 M22
the coll;res;;_z)nding ele- 4, 4;Y 47t 4, 1 M
ment h € H.
Col. 1: Element g € Mez M m m i
G for which the rep | Mez| 1 1 Mg, 1 Mg M
matrix is to be deter- my, my, 2, my m,. My,
mlned; 4,2 4;1 Mgz myz 1 M34
Cols. 2 to 4: coset _1
representative Mz My 4, 4. 1 Mz
8&m, m=1 ... 4and |my | I 1 My, My, 1 M,
steps‘towards the cal- My, my. 1 1 1 Moy,
culation of h; 4 4! 4 M
Col. 5: listing of that 2 Tz Mo z Mz 33
(unique) coset repre- Myz Myz 4, Mz | My, My
sentati\t/e Wkiich is neclz— 4, 1 1 4. my My My,
essary to obtain an el-
ement Of H, myz myi My 4z My, M23
Cols. 6 and 7 contain 4, 4, 1 1 1 M3,
the element h € H and Myz Maz My, My, 1 My
the non-zero element

= 1 1 1 M

of the row m of the | °7 mff Maz 14
M matrix which are Mmy. my. 4, 4. 1 Mo
needed for the next 4, 4;* my, My, 1 Ms,
step. My me 11 1 My
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3. Construction of the induced reps D™ (4mm) = DY (m,,) t 4mm, i =1, 2

The matrices for the elements I, m,,, m,,, 4, and m,z are listed here. The
elements 1 and m,, form the subgroup H, 4 can be taken as a generator which
generates G from H. The group G is also generated by m,, and m,z, etc.

One confirms for the listed matrices the relations m,, 4 = m,z and m,z m,., = 4,
taken from the group table 3.1.1. The matrices for 2, 4;1, and m,,, are calculated
from those given by, e.g. 2. = mg. m,., 4;1 = my, Myz, and my, = m,. 4.,
following the group table 3.1.1.

DY(1) 0 0 0
0 D91 0 0
D!"(1) = - ;
0 0 DY) 0
0 0 0  DY(1)
DY(m,.) 0 0 0
0 DY (m,, 0 0
Dilnd<mxz) — (m ) o ;
0 0 0  DY(1)
0 0 DY(1) 0
0 DY) 0 0
DY(1) 0 0 0
Ind o .
Dimyz) = 0 0 DY(m,.) 0 ’
0 0 0 DY(m,,)
0 0 0 DY (m,.)
D _ 0 0 DY(m,.) 0 _
0 DY) 0 0
0 0 0 DY)
D/ () — 0 0 DY1) 0
P 0 DY) o0 0
DY(1) 0 0 0
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3.1.2 Conjugate representations and orbits

In general the induced reps are reducible. However, our aim is to obtain a procedure
for the construction of the irreps of a group G from the irreps of one of its subgroups
‘H < G. For this we consider a pair ‘group—normal subgroup’ G > H.

Definition (D 3.1.3) The set of matrices (D (#)), = {D®(g ' hg), h € H}, where
g €G, g ¢ H, forms arep of H. It is called a representation conjugate to H by

geqg.
The fact that (D®(H)), is a rep follows directly from its definition:
(D (h)), (D (hy))y = D¥ (g~ hg)DW (g hg) = DY (g higg ' hg) =
D™ (g™ hihy g) = (D (h hy)),.

)

The conjugate rep (D™ (H)), consists of the same set of matrices as D (H) but
possibly assigned to group elements different from those of D® (H). Therefore,

1. the dimensions of D () and (D (#H)), are equal;
2. (DY (H)), is an irrep if D™ (H) is.

3. If (D¥(H)), is conjugate to D™)(H), then these reps may or may not be equiv-
alent.

Definition (D 3.1.4) The set of all inequivalent irreps (D*)(H)),, conjugate to
D®(#) by all elements g € G, is called the orbit O(D®(H)) of D® (H) relative
to G. The number of reps in the orbit is called the length L of the orbit O(D®)(#)).
A rep D®(H) is called self-conjugate if the length of its orbit is L = 1.

Many of the possible conjugate irreps {(D*)(H)),, g € G}, are equivalent. In partic-
ular, two irreps (D(S)('H))gi and (D (H))g:, conjugate to (D (H)) by elements g,
and g/ from the same coset of the decomposition of G relative to H: g’ = g, h',h' € H,
are equivalent:

(D®(h))g; = D*(gi" hg)) = DY (" g hg;h) =
D (KW ) DY (g7 hg,) D (H) =D (K)=(DY(h))g DW(K'), for all h € H.
Thus, the complete orbit O(D") (%)) relative to G is obtained already by conjugation

with the coset representatives of G relative to H. However, also irreps conjugate by
elements from different cosets of H relative to G may be equivalent, see Section 3.1.3.

By conjugation the complete set of irreps of H is distributed into orbits relative to G.
The orbits are disjoint because each of them contains mutually conjugated irreps of

H.
[ ] Example 1. Distribution of the irreps of 4 into orbits of conjugate irreps relative

to 4mm

- Coset decomposition of Jmm relative to 4
qgmm = 41U my 4
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- Conjugation of the elements of 4 under m,,

- irreps of 4 and their conjugacy by m,.,
From the conjugation of the elements of 4 it follows that the conjugate of an irrep
{DY(1), DY(4.), DV(2,), DY (4;")} is obtained by the following mapping:
1 - DY(1), 2,—DY2,), 4.— DY4Y, 4;' = DY(4,).

Irreps of 4 Irreps of 4 conjugated by m,, € 4mm
4|1 4. 2. 4 4 1 4, 2, 471
pWi1 1 1 1 O, |1 1 1 1
D@1 -1 1 -1 O, |1 -1 1 -1
D® |1 i -1 —i D), |1 —i -1 i
DW|1 —i -1 i Oy, |1 i -1 —i

The irreps DY and D® are self-conjugate because (DW),,. = DW and (D®),, =

D®, while D® and D® form a pair of conjugate irreps. The orbits are
(D}, {D®}, {D©), DV}, :

] Example 2.  Distribution of the irreps of mm2 into orbits of conjugate irreps
relative to 4mm.

- coset decomposition
4mm = mm2U 4, mm2

- conjugation of the elements of mm2 under 4,
4. my 4, =my; 4 my 4, =my,; 4,124, =2,.

- irreps of mm2 and their conjugates under 4,

mm2|1 m,, m,. 2, mm2 I mg, my, 2,
pw» |1 1 1 1 O, 1 1 1 1
D@ (1 1 -1 —1 O, |1 -1 1 -1
D® |1 -1 1 -1 M), |1 1 -1 -1
DW (1 -1 -1 1 O, |1 -1 -1 1

- orbits of irreps of mm2 under the group 4mm; {DW}, {D® D®} {DW} m
] Example 3. Orbits of irreps of a non-centro-symmetric group G relative to the
corresponding group G x 1, where 1 is the inversion group 1 = {1, 1}

- coset decomposition of G x 1 relative to G

Gx1=GUIQg.

As the inversion commutes with all g € G, all irreps of G are self-conjugate in G x 1.1
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3.1.3 Little groups, allowed irreps, and induction theorem

Given a group G > H and an irrep D(S)('H) of H, one can define the little group G* of
D (H): it is the subset of G that conjugates D) (#) onto an equivalent irrep.

Definition (D 3.1.5) The set of all elements g € G for which D) (H) is self-conjugate
forms a group which is called the little group G° = G*(D'®)(H)) relative to G.

Any element h € H leaves D(s)(H) equivalent under conjugation. Thus, H < G°
follows. Moreover, H <1 G° because H <1 G holds: G > G° > H.

When G*(D®(H)) = G, all conjugate irreps of D®)(#) are equivalent. For example,
the identity rep is invariant under any conjugation. Therefore, its little group is always
G. Also if H is in the centre of G, then the G is the little group of every irrep of H.
If the little group of D®)(#) is the group H itself, then the rep of (D(s)('H))gi is
non-equivalent to D(S)('H), if g, is any coset representative different from the identity
element.

The set of non-equivalent irreps belonging to the orbit of D (H) is formed by the
irreps (D (H)) g. which are conjugate by the coset representatives g, € G of G relative
to G°, The length of the orbit is the index |G : G°|.

All members of an orbit have conjugate little groups: if G is the little group of D®® (H),
then ng — g,G° g is the little group of (D) (H))g,-

Our aim is to develop an induction procedure for the construction of the irreps of
G, given the irreps D' (H). For that it is necessary to consider the induction from
the irreps of the little group G*(D® (H)). However, G°* may have many irreps. Only
some of them are of interest for the derivation of the irreps of G. These are the so-
called allowed irreps (known also as allowable irreps or small irreps) according to the
following definition.

Definition (D 3.1.6) An irrep DY(G*) = DY(G*(D®(H))) is called allowed if its
subduction to the group H contains the irrep D) (H) of H.

Now one can state the theorem which permits the construction of the irreps of a group
G provided the irreps of a normal subgroup H <1 G are known. One considers the
groups G and H and the orbits O(DY)(H)) relative to G.

Lemma 3.1.2 Induction Theorem

1. Let DY(#) be an irrep from the orbit O(DY(#)) with the little group
G/ (DY (H)) relative to G. Then each allowed irrep D™ (G7(DY(H))) of
QJ(D(] (H))induces an irrep D'"¥(G), whose subduction to H yields the orbit

)-

O(DY)(H)

2. Allirreps of G are obtained exactly once if the procedure described in 1 is applied
on one irrep DY () from each orbit O(DY)(#)) of irreps of H relative to G.

By this theorem the problem of determining the irreps of a group G from those of
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a normal subgroup H < G is reduced to the determination of the allowed irreps of
the little group G (DY) (H)). For their determination one can use the theorem stated
above and the fact that the crystallographic point groups G of 3-dimensional space are
solvable groups. For each of them a series of subgroups H; exists such that

GoHI>...DH A DHe> . .. DH, =T (3.5)

with | Hy_1/Hy |= 2 or 3, i. e. with cyclic factor groups of order 2 or 3.

3.2 The special procedure for indices 2 and 3

If the group H is a normal subgroup of the group G of index 2 or index 3, then the
little group G*(D® (#)) of any irrep of H is either the group G or its normal subgroup
‘H because of the prime index. Two cases are to be distinguished:

1. The orbit has the length 2 or 3, G*(D®)(H)) = H.
2. The orbit has the length 1, i. e. (D) (H)) = G.

3.2.1 The induction formulae for lengths 2 and 3

One can now make use of the obtained results for those cases where the length of the
orbit is not trivial, ¢. e. where the orbit is not self-conjugate. For a normal subgroup
of index 2 or 3 one can decompose G into cosets relative to H, i.e. G = H U qH for
index 2, and G = HU qH U g*H for index 3 with g € G but g ¢ H.

The orbits of conjugate irreps have the form:

o index 2: O(D®(H)) = {D®)(H), (D®(H))q}
o index 3: O(D®) () = {DW(H), (DY (H))g, (D) (H))g:}.

In both cases there is just one allowed irrep which is the irrep D® (H) itself, because
G* = H. An irrep of G can be induced from D (%) following the general induction
procedure, see Section 3.1.1.

For example, for index 2 the auxiliary table necessary for the construction of the
induced irrep has the form, c¢f. the table in Section 3.1.1

gle,| &'e |&g| &'gg; |M;#0
h| e h e ehe=nh My,
g| g'h | qlgthg=(h,| My
q|e q q q* M,
g|qg'lg=e]e e Moy
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which results in the following matrices for the induced rep D™"*(G):

Ind _ D(8)<h) o . nind _ o D(S)<q2)
D W—( 0 w@wn>’D<”‘<I 0 >. (36)

Similarly, the general procedure reduces for index 3:

D®(h) o o O 0 DY(¢)
D™™(h) = 0 (DY(h), 0 D"(q=| I 0 O
o o (D®(h)),2 O I 0
(3.7)

From the induction theorem on p. 28 follows that each orbit of conjugate irreps of H
yields exactly one irrep of G.

Remark. In accordance with lemma 2.1.6, by subduction from G to H all two or
three conjugate irreps of H ‘appear’. The (square of) the dimension compensates the
‘loss’ of irreps in the induction and takes account of the increase of group order from

HtoG.

3.2.2 Self-conjugate irreps

If the length of the orbit is 1, i. e. the irrep of H is self-conjugate, then for the little
group G®* = G holds. The general theorem is now not very useful as the allowed irreps
of the little groups are irreps of G which we want to determine. However, each self-
conjugate irrep of H gives rise to |G/H| irreps of G with the same dimension as D®) (%)
has. The matrices of the irreps D<S)’m(g), m=1, 2orm =1, 2, 3, derived from the
self-conjugate irrep D (H), are given as follows:

index 2
D@L(h) = DO2(h) = DO)(h), heH D¥(q)=-D?q)=U (38)
where U is determined by the conditions
DY(g hq)= U ' DY (h) U, heH: U’ =DY(q*)
index 3

D" (h) = D), m=1,2.3  D(q) = eD(q) = 2D (q) = U (3.9
with € = exp 27i/3, where U is determined by the conditions

DY(g hq)=U"'D¥(h) U, he H and U®=DV(g*)

3.3 Examples

The following examples give the opportunity to apply the formulae 3.6, 3.7, 3.8, and
3.9.
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3.3.1 Example 1

Determination of the irreps of the group Cj,.

The group C4 is an Abelian group. Therefore, all subgroups are normal subgroups, all
irreps of C4 and of its subgroups are of dimension 1, i. e. they are (complex) numbers,
and all orbits of irreps have the length 1. In all cases, formula 3.8 applies.

The composition series of the group C4 is C4 > Co > Cy.

Decomposition of the group Cs relative to its subgroup Cy: Co =C;UbC;. The coset
representative g of formula 3.8 is the element b.
Determination of the matrix U:

1. U 'A(e)U = 1: self-conjugacy; U = € (Schur’s lemma).
2. U?=A(e)=1; U ==+1.

C2 e b
The irreps of the group Cs are A
B |1 -1

The decomposition of the C4 relative to its subgroup Cs is C4 = Co U aCs.

Cile a a° a° Cile & a 2a°
e |le a 2 2 e |le & a 2
Group table of the group Cy: | a |a a°> a° e |;theform |a%?|a® e a° a
a’|a® & e a a |la a a e
alad e a & a|lad a e &

is more transparent for our purpose because it accentuates the subgroup Cs. The
elements of C, are e and a> = b; the new generator is ¢ = a. Because C4 is Abelian,
g 'a’q = a® holds. The orbits of the irreps of Cy relative to C4 are self-conjugate, i. e.

O(A) = A; O(B) = B.

1. The irreps of the group C,4, induced from the irrep A. One determines the matrix
U for O(A):
(a) Ut A(h) U = A(h), h € Cy: self-conjugacy; U = ¢ (Schur’s lemma).
(b) U?=A(¢*) = A(a%) = +1; U = =+1.

From the irrep A of C, the irreps A and B of C, have been induced, see Table
3.3.1.

2. The irreps of Cy4, induced from the irrep B of Cy. One calculates the matrix U
by

(a) U ' B(h) U = B(h), h € Cy: self-conjugacy; U = €*¢ (Schur’s lemma).
(b) U? = B(¢?) = B(a*) = —1; U = +i.
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From the irrep B of C, the irreps "E and ’E of C4 are induced. All four irreps
are listed in the following table.

Cile a° a &
A |1 1 1 1
Table 3.3.1 Irreps of C,4 B |1 1 -1 -1
'El1 -1 —i
E|1 -1 0 —i

3.3.2 Example 2

Determination of the irreps of the group 7 (Tetrahedral group of order 12), induced
from the irreps of the group Ds. The crystallographic realizations of these groups are
the point groups (denoted by their HM symbols) 23 and 222.

The composition series of T is T > Dy > Co > Cy

The irreps of the group 7 will be derived from the irreps of its normal subgroup Ds.

Dyle a b ¢
Al 1 1 1
The irreps of Dy are B, |1 1 -1 -1
Bo|1 -1 1 -1
B;|1 -1 -1 1

1. Determination of the orbits of the irreps of Dy relative to the tetrahedral group
T:

The coset decomposition of T relative to Dy is T = Dy U q Dy U g% Ds, where
the elements g and g2 are found in the group table 3.3.2 of 7. The group D,
is displayed in the upper left square of the table; the generator g has the same
name in the group table.

One takes from the group table 3.3.2 of T the results of the conjugation of the
elements of D,

conjugation relations in the group 7T
g leqg=¢ qleq’=e
g lag=>b; g ?aq’=c;
g lbg=c; q2bg’ =3
glcg=a; g 2cqg’=b.
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Tle a b clqg r s t|qg r? s ¢t
elle a b clqg r s t|g* r* s* t?
alla e ¢ b|t s r ql|s* t2 g* r?
Table 3.3.2 Group bl b ¢ e alr q t s|t& s 2 ¢
table of group T. o 9 .o o
The elements of the cjjc b a e 52 t2 Z r2 r.q t.s
group table have g9 s t r|g s t° r"je b c a
the orders rifr t s q|t2 r? ¢* s°| b e a c
order 1: e 9 9 2 9
s|l s r t|r° t° s c a e b
order 2: a, b, ¢ 9 s o o q2
order 3: q, r, s, t, t||t r q s|s° g r° tt|a ¢ b e
g, r?, s, t2. g*>llq*> t2 r? s?|e ¢ a blqg t r s
r’llrr 2 ¢> t2|c e b als r t q
s?ls2 r» t2 g°la b e c|t q s r
t21t2 > s2 r2|b a ¢ e|r s q t
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The orbits of irreps of Dy are O(A) = (A); O(B;) = {B;, By, Bs}.

2. Irreps of the group T

The irrep A is self-conjugate. The lemma of Schur applies: U = exp(i¢). For the
determination of the matrix U only the equation U® = A(g®) = 1 = 1 remains.
The result is U,, = exp2mim/3, m = 1, 2, and 3. From the irrep A of group

222 the three irreps A, 1E, and E are induced.

The orbit O(B;) consists of three irreps, thus formula 3.7 applies. One obtains
the following matrices for the fourth irrep of 7T

1 00 1 0 0 -1 00
Te)=| 010 |;:T@=|0 -1 ol;:TL)=] 0 -1 0 |;
0 01 0 0 -1 0 01
-1 0 0 0 01
T (c) = 0 |; T(gg=| 1 0 0
00 -1 010

The matrices for the other elements of 7 are obtained by multiplication of these
matrices according to the group table, for example

T(q*) = T(q) T(q);

T(r) = T(b) T(q); T(s*) = T(a) T(q*); etc.

The characters of the irreps of 7 are given in Section 6.4.3, page 57.



Chapter 4

Irreducible representations of space
groups

For the derivation of all irreps of a space group we use the method of constructing the
irreps of a group G from those of a normal subgroup H <1 G which has been discussed
and demonstrated for the irreps of point groups. The main steps of the procedure are:

1. Construct all irreps of H

2. Distribute the irreps of H into orbits under G and select one member of each
orbit

3. Determine the little group for each selected irrep of ‘H
4. Find the allowed (small) irreps of the little group

5. The irreps of G are constructed from the allowed irreps of the little group by
induction.

The set of all irreps of G is complete if the induction is applied to all allowed irreps of
the little group for each selected irrep of H.

The translation group T is a normal subgroup of every space group. The irreps of T
and their distribution into orbits will be discussed in Section 4.1. The determination
of the little groups of the selected irreps (step 3) and the induction procedure (step 5)
follow the general scheme already explained and applied in the derivation of the point-
group irreps. The most involved step in the above procedure is the determination of
the allowed irreps of the little group (step 4). In most books on irreps of space groups
this difficulty is removed by applying the theory of the so-called projective reps. Here
we have preferred another approach for the construction of the small irreps. It is based
on the fact that all space groups are solvable groups, i.e. for every space group one
can construct a composition series

GoHIiD>Hy ... DT
such that all factor groups H;/H; 1 are cyclic groups of order 2 or 3.

34
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4.1 Representations of the translation group 7

For representation theory we follow the terminology of BC and CDML.

Let G be referred to a primitive basis. The infinite set of translations (I,t), with
t being the column of integers (ny, ny, ns) is based on discrete cyclic groups of infinite
order. For the following, this group will be replaced by a (very large) finite set in the
usual way: One assumes the Born-von Karman boundary conditions

(I> ti)Ni = (I7 NZ) = (L 0) (41)

to hold, where t; = (1,0,0), (0,1,0), or (0,0,1) and NV; is a large integer for ¢ = 1, 2, or
3, respectively. Then for any lattice translation ( I, t)

(I, Nt) = (I, 0) holds, (4.2)

where Nt is the column (Nynj, Nang, N3ng). If the (infinitely many) translations
mapped in this way onto (I, o) form a normal subgroup 77 of G, then there exists
a factor group G’ = G/T of G relative to T with translation subgroup 7' = T /T,
which is finite and is sometimes called the finite space group.

Only the irreducible representations (irreps) of these finite space groups will be con-
sidered. The definition of space-group type, symmorphic space group, etc. can be
transferred to these groups. Because 7T is Abelian, 7" is also Abelian. Replacing the
space group G by G’ means that the particularly well-developed theory of represen-
tations of finite groups can be applied, c¢f. Lomont (1959), Jansen & Boon (1967).
For convenience, the prime ’ will be omitted and the symbol G will be used instead of
G', T' will be denoted by T in the following.

Because T, i.e. former 7', is Abelian, its irreps I'(7") are one-dimensional and con-
sist of (complex) roots of unity. Due to the equations (4.1) and (4.2) the irreps
Iaes((1,t)] of T have the form

T7925((], t)] = 6*2ﬂi(q1%+qz%+qs%§)’ (4.3)
where ng, ¢;,=0,1,2, ... ,N; =1, 7 =1,2,3, ng, and g; are integers.

Given a primitive basis a;, as, ag of L, mathematicians and crystallographers define
the basis of the reciprocal lattice af, a5, a} (or basis of the dual lattice ) L* by

a; * a;f = 5ij7 (44)

where a - a* means the scalar product between the vectors, and d;; is the unit ma-
trix (see, e.g., IT B, Subsection 1.1.3). Texts on physics of solids redefine the basis
aj, a3, a3 of the reciprocal lattice L*, lengthening each of the basis vectors a} by the
factor 2. Therefore, in the physicist’s convention the relation between the bases of
direct and reciprocal lattice reads, c¢f. BC, p. 86:

a; - a; = 271'(5@']'. (45)
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In the present chapter only the physicist’s basis of the reciprocal lattice is employed,
and hence the use of a} should not lead to misunderstandings. The set of all vectors
Kl

K= Kla’{ + KQa; + K3a§, (46)
K; integer, is called the lattice reciprocal to L or the reciprocal lattice L* 2.
If one adopts the notation of IT A, Chapter 5, the basis of direct space is denoted by a
row (a, ag, a3)’, where ( )T means transposed relative to columns. For the reciprocal
space, the basis is described by a column (aj, al, a}).

To each lattice generated from a basis (a;)* a reciprocal lattice is generated from the

basis (aj). Both lattices, L and L, can be compared most easily by referring the
direct lattice L to its conventional basis (a;)" as defined in Sections 2.1 and 9.1 of IT
A. In this case the lattice L may be primitive or centred. If (a;)" forms a primitive
basis of L, i.e. if L is primitive, then the basis (a}) forms a primitive basis of L*. If L
is centred, i.e. (a;)T is not a primitive basis of L, then there exists a centring matrix
P, 0 < det(P) < 1, by which three linearly independent vectors of L with rational
coefficients are generated from those with integer coefficients, ¢f. I'T A, Table 5.1.

Moreover, P can be chosen such that the set of vectors

(p17 b2, P3)T = (31, Az, as)T P (4-7)

forms a primitive basis of L. Then the basis vectors (p7, ps, p3) of the lattice reciprocal
to the lattice generated by (p1, ps, p3)T are determined by

(P}, Py, Py) = P~ '(a], a3, a}) (4.8)

and form a primitive basis of L*.

Because of det(P~') > 1 not all vectors K of the form (4.6) belong to L*. If k,;p} +
kpaps + kpsps are the vectors of L* and K, K,, Kj are the (integer) coefficients of
these vectors K referred to (a}), then K = (K;)" (a}) = (K;)" P(p}) = (kp)" (p})
is a vector of L* if and only if the coefficients

(kph kp?u kp3)T = (K17 K27 K3)TP (49)

are integers. In other words, (K, Ko, K3)* has to fulfill the equation

(K1, Ky, K3)T = (kypy, ko, Kp3) TP (4.10)

In crystallography vectors are designated by small bold-faced letters. With K we make an exception in
order to follow the tradition of physics. A crystallographic alternative could be t*.

2The lattice L is often called the direct lattice. These names are historically introduced and cannot be
changed anymore, although equations (4.4) and (4.5) show that essentially none of the lattices is preferred:
they form a pair of mutually reciprocal lattices.
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As is well known, the Bravais type of the reciprocal lattice L* is not necessarily
the same as that of its direct lattice L. If W is the matrix of a (point-) symmetry
operation of the direct lattice, referred to its basis (a;)T, then W' is the matrix of the
same symmetry operation of the reciprocal lattice but referred to the dual basis (af).
This does not affect the symmetry because in a (symmetry) group with each element
its inverse also belongs to the group. Therefore, the (point) symmetries of a lattice
and its reciprocal lattice are always the same. However, there may be differences in
the matrix descriptions due to the different orientations of L and L* relative to the
symmetry elements of G and due to the reference to the different bases (a;)T and (a}).
For example, if L has the point symmetry (Hermann-Mauguin symbol) 3m1, then the
symbol for the point symmetry of L* is 31m and wvice versa.

Let (a;)T be a conventional basis of the lattice L of the space group G. With the
relations (4.5), k; = ¢i/N;, and k = 377 | k;aZ, equation (4.3) can be written

r22s[(1,t)] = T*[(I,t)] = exp —i(kt). (4.11)

Equation (4.11) has the same form if a primitive basis (p;)T of L has been chosen. In
this case the vector k is given by k = 25’:1 kpi P} -

Let a primitive basis (p;)T be chosen for the lattice L. The set of all vectors k (known
as wave vectors) forms a discontinuous array. Consider two wave vectors k and k' =
k + K, where K is a vector of the reciprocal lattice L*. Obviously k and k’ describe
the same irrep of 7. Therefore, to determine all irreps of 7 it is necessary to consider
only the wave vectors of a small region of the reciprocal space, where the translation
of this region by all vectors of L* fills the reciprocal space without gap or overlap.
Such a region is called a fundamental region of L* (the nomenclature in literature is
not quite uniform. We follow here widely adopted definitions).

The fundamental region of L* is not uniquely determined. Two types of fundamental
regions are of interest in this chapter:

1. the first Brillouin zone or simply Brillouin zone, abbreviated BZ, is that range of
k space around o for which | k | <| K — k | holds for any vector K € L* ( Wigner-
Seitz cell or domain of influence in k space). The Brillouin zone is used in books
and articles on irreps of space groups;

2. the crystallographic unit cell in reciprocal space, for short: unit cell, is the set
of all k vectors with —1/2 < k; < 1/2. It corresponds to the unit cell used in
crystallography for the description of crystal structures in direct space. However,
the center is here the o vector.

4.2 Orbits of irreps of 7 and little groups

In the previous section the irreps of 7 have been determined. These irreps have now
to be classified into orbits relative to G.
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By definition the orbit of an irrep T¥(7) includes all non-equivalent irreps I‘k/(T) for
which there exists a matrix-column pair (W, w) of g € G such that

T (I, t) =TX(W, w)Y(I, t)(W, w)), (I, t)eT.

From (W, w)™' (I, t) (W, w) = (I, W 't) follows
K (I, t) = T%(I, W't) = exp —(ik (W 't)) = exp(—i (k W) t). Thus,

K=kW'+K, Kec L (4.12)
By the lattice vector K € L* the vector k' is brought back to the fundamental region
in case it would be outside otherwise.

Let k be some k vector and W be the matrices of G.

Definition (D 4.2.1) The set of all matrices W € G which leave the vector k invariant
or change it to an equivalent one, 7. e.

k=kW+K, KelL, (4.13)

forms a group which is called the little co-group ?k of k. The vector k is called a
general k vector if GX = {Z}; otherwise G¥ > {Z}, and k is called a special k vector.

The little co-group GKis  a subgroup of the point group G. Consider the coset decom-
position of G relative to G .

Definition (D 4.2.2) If { W,,} is a set of coset representatives of G relative to G X,
then the set (k) = {kW,, + K} is called the star of k and the vectors k W,, + K
are called the arms of the star.

Here again the lattice vector K is necessary if k W, is outside the fundamental region.

An orbit of TK(T) relative to G comprises all irreps I‘k/(T) with k’ belonging to k.
From the classification of all k vectors into stars follows the distribution of the irreps
of T into orbits relative to G. The length of an orbit O(I‘k(T)) is equal to the number

—k —
of arms of xk which is the index of the little co-group G of k in the point group G.

If k is general, then there are |G| vectors (arms) from the star of k in each fundamental
region. If k is special with little co-group ?k > {Z}, then the number of arms of the
star of k in the fundamental region is |G|/|G " |.

According to the induction theorem, lemma 3.1.1, in order to obtain each irrep of
G exactly once, one needs one k vector per star. A simply connected part of the
fundamental region which contains exactly one k vector of each star of k, is called a
representation domain ® . Thus, for the determination of all irreps of G it is sufficient
to consider the k vectors belonging to the representation domain.

We are now in the position to define the little group G if the space group G, its
translation subgroup 7, and an irrep Fk(T) are given. The little group is a space
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group and consists of all those elements of G whose rotation parts W leave either k
unchanged or invert it into an equivalent vector.

Definition (D 4.2.3) The group of all elements (W, w) € G for which W € GX, is
called the little group gk of k.

4.3 Allowed irreps of the little group

The irreps of space groups are obtained by induction from the allowed irreps of the little
groups GX of k. If Dk’i(gk) is an allowed irrep of G¥, then Dk’i(I, t)=exp(—ikt) I
holds. The matrix I is the identity matrix with dim(I) = dim(Dk’i(Qk)).

The determination of the allowed irreps is trivial for a k wvector in general position.
Then its star contains |G| arms, . e. its little group is the translation group. For a
given k vector it has just one allowed irrep, namely the one which belongs to the k
vector considered. Thus, every star in a general position contributes exactly one irrep

of G.

Under certain conditions one can express the allowed irreps of GX in terms of the irreps
—ki . =k .
D of the little co-group G for a special k vector.

Lemma 4.3.1 Let one of the following two conditions be satisfied

1. k is a vector of the interior of the BZ
2. GKisa symmorphic space group.

Then the number of non-equivalent allowed irreps DX? of the little group GK is the

. . =k, i . =k .
same as the number of non-equivalent irreps D of the little co-group G , and their
matrices are of the form:

DXiI(W, w) = exp—(ikw) DV (W), (W, w) e Gk,

In this way the allowed irreps of G are expressed by irreps of the point groups. Only
certain stars on the surface of the BZ give rise to difficulties for non-symmorphic space
groups. These cases can be solved by the method of deducing all irreps of a group G
from the irreps of a normal subgroup H <G with index 2 or 3. Since the little groups are
space groups and thus solvable groups, one can construct for them composition series
with factor groups of order 2 or 3. The irreps of any non-symmorphic space group can
be constructed step by step following the chain of normal subgroups, starting from
the irreps of that symmorphic subgroup Hy of G which has the smallest index. For
each space group there is always at least one symmorphic subgroup in the composition
series from 7T to G: its translation subgroup 7.

Only the allowed irreps of the little group GX are necessary for the construction of
the irreps of G. However, it is straightforward to show that the allowed irreps of a

symmorphic subgroup ’H%)( < gk yield allowed irreps of GX. On the other hand, non-
allowed irreps of 'Hé{ < gk yield non-allowed irreps of GX. In other words, in order to
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obtain all allowed irreps of GK it is only necessary to consider the allowed irreps of the
symmorphic subgroup H%)(.

Consider a group-subgroup chain GK > ’H%)( with index 2 or 3. The irreps of G are
obtained from those of 7—[%)( by the formulae discussed in Section 3.2. The allowed irreps
of 7—[%{ are those whose matrices of the translation elements are of the form:

k,i .
Dr}_’[k(I, t)=exp—(ikt)I. (4.14)

For self-conjugate irreps allowed irreps of ’H%)( yield allowed irreps of gk, see equation
3.8 and 3.9.

For induction from non-self-conjugate irreps of ’H%f, see equations 3.6 and 3.7, the
above result is also valid

(D2 k(L ) W) = DL AW, w) 7 (L ) (W w)] =exp—(i (k W) T = exp —(ikt) I,

0 0

(4.15)

because the coset representative (W, w) of G¥ relative to ?—[é{ leaves the k vector
invariant (up to a lattice vector K € L*). From the discussion is also clear that

non-allowed irreps of 'H%f give rise to non-allowed irreps of Gk.

4.4 Induction procedure

All irreps of a space group G are obtained by taking a vector k from each star and
inducing irreps of G from all non-equivalent allowed irreps DX? of the corresponding
little group G¥. If dim(Dk’i) = r and s is the order of the star of k, then the induced
irrep D*k’i(g) has the dimension rs. The matrices of D*k’i(g) can be arranged in
blocks M; ; of dimension r, with one non-zero block in each row or column of blocks.

If we choose the elements (W, w;), i =1, ... ,s as representatives of the cosets of
G relative to GX: G = GK U (W, ws) Gku ... U (W, wy) gk,
then the block 7 j is zero unless (W, w;)"' (W, w) (W, w;) € Gk

As was already discussed in Section 4.3, the little group GX of k is the translation
group 7 if k is a vector of general position. Then I‘k(T) is the only allowed irrep.

The corresponding induced irrep of G has a dimension equal to the length of the orbit
sk = {kq, ko, ..., k,}, where k; =k W, + K with W, € G.

The representation matrices corresponding to the elements of 7 are diagonal matrices,
where the elements are the irreps of 7 belonging to the orbit of k.

The representation matrices for any element of G and arbitrary k vector are obtained
by the general induction method, see Section 3.1.1. For better efficiency it is advisable
to calculate the non-zero blocks of the induction matrix first. Very often, for a better
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overview of the irreps of G, their matrices are presented by the non-zero blocks of the
induction matrix and the corresponding submatrices of the little-group irreps.

4.5 Procedure for the construction of the irreps of space
groups.

The main steps for constructing the irreps of space groups can be summarized as
follows

1. Space-group information

(a) Decomposition of the space group G in cosets relative to its translation
subgroup T, see IT A (1996)

g =TU (WQ, ’U)Q)TU oo U (Wp, ’U)p)T
(b) Choice of a convenient set of generators of G, see I'T A (1996)

2. k-vector information

(a) Choice of a k vector (from the rep domain ® of the BZ). The coefficients of
the k vector have to be referred to the dual basis of that basis relative to
which the space group is defined:

(b) Determination of the little co-group Gk of k:
G =(W.eG: k=kW,+K, KeL*}
(c¢) Determination of the k-vector star *(k)
*x(k) ={k, ko, ... ,ki}, withk =k W,, j =1, ... s, where W, are the
coset representatives of G relative to ?k.
(d) Determination of the little group Gk
Gk = (Wi, @) €G: Wi €T}
(e) Decomposition of G relative to gk

An obvious choice of coset representatives of G relative to GX is the set of
elements {¢; = (W,, w;),i=1, ..., s}

where W, are the coset representatives of G relative to G
G =GXU Wy, wy)GRU ... (W, w,)G¥
3. Allowed irreps of Gk

(a) If Gk is a symmorphic space group or k is inside the BZ, then the non-
equivalent allowed irreps DK of GX are related to the non-equivalent irreps
Bk’i of ?k in the following way:

DX {(W,, @) = exp —(ikw,) DV (W)

(b) If GKis a non-symmorphic space group and k is on the surface of the BZ,

then:
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ii.

1il.

i. Look for a symmorphic subgroup 7—[%)( (or an appropriate chain of normal

subgroups) of index 2 or 3

Find the allowed irreps Dl;_’[i of H%)(, i. e. those for which is fulfilled
0
Dl;_’[’ (I, t) = exp—(ikt) I and distribute them into orbits relative to
0

gk
Determine the allowed irreps of Gk using the results for the induction
from the irreps of normal subgroups of index 2 or 3

4. Induction procedure for the construction of the irreps Dk of G from the allowed
irreps Dk of g
The representation matrices of D*k’i(g) for any element of G can be obtained if
the matrices for the generators {( W, w,;), [ =1, ..., k} of G are available (step

la).

(a) Construction of the induction matrix.
The elements of the little group G¥ = {(W;, w;)} (step 2d) and the coset

representatives {q, ..., qs} of G relative to Gk (step 2e) are necessary for
the construction of the matrix M (W, w,;)

‘ (Wi, wy) ‘ i

-1

g g (W, w) | g (W, w))g; ‘ M(W,, w)i; #0 ‘

Matrices of the irreps D*k’m of G:
D*k7m( Wl, wl)iu,ju - M( Wl) wl)ij Dk7m(/ﬁ7p7 ’sz)uw
where (W, w,) = ¢; ' (W, w)) g;.

All irreps of the space group G for a given k vector are obtained considering

all allowed irreps DK™ of the little group GX obtained in step 3.

4.6 Example 1. Irreps of P/mm, k vector X (0, 1/2, 0)

1. Space-group information

(a) Decomposition of P4mm relative to its translation subgroup;
coset representatives from IT A (1996)

(1,0), (2., 0), (4;0), (47", 0), (Mys, 0), (Mg, 0), (Mg, 0), (Myy, 0)
(b) generators of P4mm from IT A (1996)
t17 t27 t37 (2Z7 0)7 (47 0)7 (my27 O)

2. k-vector information

(a) X (0, 1/2,0)
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(b) little co-group GX ={1, 2, m,,, m,.} = 2,my,m,,

100
eg, X2 = (0,1/2,0) ] 0 1 0 = (0, —-1/2,0) = (0,1/2,0) +
0 01
0,1, 0)
(¢) k-vector star: x X = {(0, 1/2,0), (1/2, 0, 0)}
coset representative of G = 4mm relative to G = 2. My My, HM symbol
mm?2

4mm = szyzmmz Umg, szyzmmz
(d) little group G~ = P2,m,,m,,, HM symbol Pmm2
(e) decomposition of P/mm relative to P2,m,,m,,
Pimm = P2,my,my, U (M, 0)P2,m,,m,,
3. Allowed irreps of G '
Because G¥ is a symmorphic group, D (W;, @;) = exp — (i X W;) 5X’Z(W}-).
In the following table, ¢ is the column of integer coefficients (n;, ns, ns)

P2,mm| (1,0) (2,0) (my,, o) (m,,, o) (1,¢)
D*! 1 1 1 1] exp—(iXt)
D2 1 1 -1 —1 | =exp—(imns)
D3 1 —1 1 —1] =(-1)m
D** 1 —1 —1 1

4. Induction procedure
Generators of Pfmm: (W, w;)) = ((1, t,), (4, 0), (m,,, 0))
Representatives of P2,m,,m,, relative to 7
{(VV]v {&J)} = {(1? O)v (227 0)7 (myza O)v (mxza O)}

Coset representatives of P4/mm relative to P2,m,.m,,
{a1, @2} ={(1, 0), (M, 0)}.



CHAPTER 4. IRREDUCIBLE REPRESENTATIONS OF SPACE GROUPS 44

(a) Induction matrix (for the group table of 4jmm see Table 3.1.1)

g (W, w) g
(Wi, w) G ' ¢ (W, w) qj = (W;, @;) | M #0
(1,t) (1, 0) (1, 0) (1,t) (1,0) (1,1) 11
(Myy, 0) (Myy, 0) (Myy, My t) (Mg, 0) (1, m,,t) 22
(my., 0) | (1,0) (1, 0) (my., o) (1, 0) (my., o) 11
(Mg, 0) (Myy, 0) (471, 0) (Mg, 0) (M., 0) 22
(4, 0) (1, 0) (1, 0) (4, 0) (M4, 0) (my., o) 12
(mg,, 0) (Mg, 0) (m,., o) (1, 0) (m,., o) 21
(b) Matrices of the irreps D*** of G
X,i
D*(1, t) DLy ‘ 9 : (4.16)
0 |D¥(1,m,t)
X,i
D*%i(m,., o) D™'(m,., o) _ 0 : (4.17)
(0] DX’Z(mm, 0)
X,i
D*(4, 0) 0 DMy o) (418
DY ‘(m,., o) (0]
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Table 4.6.1 Irreps D*** for the generators of P4mm

t= (n17 No, 77’3)

(my., o) (4, 0) (1,1)

o 10 0 1 —1)™ 0
0 1 10 0 (—1)m

pexe| [ 10 0 -1 (=)™ 0
0 -1 -1 0 0 (—1)m

pexa| (100 0 1 —1)™ 0
0 -1 -10 0 (—1)m

pexal 710 0 -1 (—1)™ 0
0 1 10 0 (—1)m
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Chapter 5

Exercises, Problems

In this part the exercises of the School are presented. The necessary basic data:
multiplication tables, matrices, character tables, etc. are listed in Chapter 6.

5.1 Exercise 1: Crystallographic groups

Problem 1
The 8 elements of the group 4mm are represented by their matrices in Section 6.3.2.
The multiplication table of the group 4mm is displayed in Section 6.2.2.

Questions:

1.

-~ L N

Which are the orders of the elements ?
How are these elements distributed into conjugacy classes 7
Which are the subgroups of 4mm 7 (use the mutiplication table).

Construct the complete subgroup diagram of point group 4mm, see Remark.
Which of these subgroups are conjugate (symmetrically equivalent) in 4mm and
which are normal subgroups?

Which composition series of 4mm can be constructed from this list of subgroups?
Compare the result with Fig. 1.2.1 on p. 11 and Table 1.2.2 on p. 12 of the
manuscript.

Remark In a subgroup diagram each, subgroup is located at a level that is determined
by its index (the original group with index [1] on top, subgroups of index [2] next lower
level, etc.). Each of these groups is connected with its maximal subgroups by straight

lines.

Problem 2
Show that any subgroup of index 2 is an invariant (normal) subgroup.

46
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Problem 3

Consider the normal subgroup {e, 2} of /mm of index 4. Determine the coset decom-
position of 4mm with respect to {e,2}. Show that the cosets of the decomposition
fulfill the group axioms and form a factor group. Determine the multiplication table of
the factor group. Is the factor group isomorphic to some crystallographic point group?

Problem 4

The ‘general position’ of the space group P4bm, No. 100, is listed in IT A (cf. Fig.
6.2, page 60) as

(1) z,y, 2 (2) 7,7, 2 (3) y,x, 2 4) y,7, 2
G)r+35.7+52 6)T+zytszz MNI+5T+52 Q) y+gr+s,2
Question:
Which matrix-column pairs or (4 x 4) matrices correspond to these ‘coordinate
triplets’?

Optional Exercise

Problem 5

The 6 elements of the group 3m are represented by their matrices in Section 6.3.1.
The multiplication table of the group 3m is displayed in Section 6.2.1.

Questions:

1.

= W N

Which are the orders of the elements ?
How are these elements distributed into conjugacy classes 7
Which are the subgroups of 3m 7 (use the mutiplication table).

Construct the complete subgroup diagram of point group $m. Which of these
subgroups are conjugate (symmetrically equivalent) in 3m and which are normal
subgroups?

. Which composition series of 3m can be constructed from this list of subgroups?

Compare the result with Fig. 1.2.2 on p. 11 and Table 1.2.3 on p. 13 of the
manuscript.

Problem 6

Consider the group 4mm and its subgroups of index 4. Determine the normalizers of
these subgroups with respect to 4mm.
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5.2 Exercise 2: Irreducible representations of point groups

Problem 1

1. Derive the table of irreps for the groups C3 and C, using lemma 2.2.1 on p. 17
of the manuscript.

2. Derive the table of irreps for the group Cg:

(a) using lemma 2.2.1 on p. 17 of the manuscript;

(b) using the formula of Section 2.2.2 on p. 18 of the manuscript.

Problem 2

1. Derive the table of irreps for the group 4/m = /4 x 1.
2. What is the difference to the table of irreps for the group 4 x m, ?

Problem 3

1. Determine the number and the dimensions of the irreps of the group 4mm. Cal-
culate the character table of the group 4mm.

2. Construct the character table of the group Dy, starting from the character table
of C4, and using the fact that Dy, = Cy4, X C;, where C; is the group of inversion,

CZ‘ = {e, I}

Optional Exercise

Problem 4

Show that all irreps of Abelian groups are one-dimensional.
Problem 5

Determine the matrices of the representation of the group Cy4, in the space of the five
atomic d-orbitals: {d,2 = 22f(r),dy, = 2y f(r),dy. = yzf(r),ds. = x2f(r),ds2_2 =
(z* — y*)f(r)} Here f(r) is a function of r only. If the representation is reducible,
determine the decomposition in irreps and the corresponding reduction matrix.
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5.3 Exercise 3: Reducible and irreducible representations.
Subduced and induced representations.

Problem 1

1. Construct the vector representation of the point group 4mm from the ‘general
position’ of the space-group table of P/mm in IT A (cf. Fig. 6.1, page 59).

2. What is the difference between this vector representation and that can be ob-
tained from the the space-group data of P4bm in IT A (c¢f. Fig. 6.2, page
60)?

3. Is the vector representation of point group 4mm reducible or irreducible? Deter-
mine the general form of a matrix that commutes with all matrices of the vector
representation of 4mm.

4. If it is reducible, decompose it into irreducible constituents.

Problem 2
Consider the two-dimensional irrep E of point group 4mm (see the first part of this
exercise) and its subgroup 4.

1. Is the subduced representation E | 4 reducible or irreducible ?
2. If reducible, decompose it into irreps of 4.
3. Determine the corresponding subduction matrix S, defined by

S'(EJ4)(h) S =@m;D'(h), h€ 4.

Problem 3

Construct the general form of the matrices of a representation of G induced by the
irreps of a subgroup H < G of index 2.

Optional Exercises

Problem 4

Consider the two-dimensional irrep E of point group 4mm (see the first part of this
exercise) and its subgroup mm2.

1. Is the subduced representation E | mm2 reducible or irreducible ?
2. If reducible, decompose it into irreps of mm2.
3. Determine the corresponding subduction matrix S, defined by

S~ (E L mm2)(h) 8§ = @m; D'(h), h € mm2.

Problem 5

Construct the general form of the matrices of a representation of G induced by the
irreps of a normal subgroup H <1 G of index 3.
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5.4 Exercise 4: Conjugate representations and orbits. Little
groups and allowed irreps.

Problem 1

Using the character table of the group C4 and the multiplication table of the group
Cyv, distribute the irreps of the group C, into orbits relative to Cy4,. For each of the
irreps of C4 determine the corresponding little groups and allowed irreps.

Problem 2

Using the character table of the group Cs, and the multiplication table of the group
Cyv, distribute the irreps of the group C,, into orbits relative to Cy,. For each of the
irreps of Cy, determine the corresponding little groups and allowed irreps.

Problem 3

Distribute the irreps of D into orbits relative to T, using the character table of D,
and the multiplication table of T (c¢f. Section 6.2.3 for the multiplication table of T).

Character table of D,

Ds | e a b c
A |1 1 1 1
B, |1 1 -1 -1
B, |1 -1 1 -1
By |1 -1 —1 1
Optional Exercise
Problem 4

Distribute the irreps of group & into orbits under conjugation of the group 8m, using
the multiplication table of 3m and the character table of 3 from exercise 2.
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5.5 [Exercise 5: Derivation of the irreps of point groups by
the induction procedure

Problem 1
By the ‘induction procedure’, derive the irreps of Dy from those of group Cs using the
multiplication table for Dy and the table of irreps of Cs.

Problem 2

By the ‘induction procedure’, derive the irreps of /Jmm from those of group 4 using
the multiplication table for group /mm and the table of irreps of 4 (cf. Section 6.2.2
for the multiplication table of Jmm).

Problem 3

By the ‘induction procedure’, derive (i) the irreps of the group G x 1 from those of the
group G; (ii) applying the results from (i) write down the irreps of 4/mmm starting
from the irreps of 4mm obtained in Problem 2 above.

Optional exercises

Problem 4

By the ‘induction procedure’; derive the irreps of 3m from those of group & using the
multiplication table for 3m (c¢f. Section 6.2.1 for the multiplication table of $m) and
the table of irreps of 3 (Exercise 2).

Problem 5

Construct the irreps of group 23 by the ‘induction procedure’ starting from the irreps
of 222 and the multiplication table of 23 (c¢f. Section 6.2.3 for the multiplication table
of 23).

Problem 6

By the ‘induction procedure’, derive the irreps of the ‘quaternion group’ Qs. The
quaternion group is defined by the two generators a and b; the defining relations are

al=e; b*=2% ab=ba’
Questions
1. Construct the multiplication table and the composition series of the group Qg;

2. Determine the number and dimensions of the irreps of the group Qg and construct
the irrep matrices by the ‘induction procedure’ starting from the irreps of the
group C,4, generated by a.
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5.6 Exercise 6: Irreducible representations of space groups

Problem 1
Consider the k-vectors I'(000) and X (050) of the group P4mm.

1. Determine the little groups, the k-vector stars, the number and the dimensions
of the little-group irreps, the number and the dimensions of the corresponding
irreps of the group P4mm. Construct the little group irreps of P4mm for I'(000)
and X (020);

2. Calculate a set of coset representatives of the decomposition of the group P4mm
with respect to the little groups of the k-vectors I'(000) and X (010), and con-
struct the corresponding full space group irreps of P/mm.

Problem 2

Consider the k-vectors I'(000) and X (050) of the group Pbm.

1. Determine the irreps of space group P4bm, k = T'(0, 0, 0). Is there a difference
to the irreps of space group P/mm, k =T1(0, 0, 0) ?

2. Determine the little-group irreps of space group P4bm for k = X (0, 1/2, 0).
Compare the obtained irreps with those obtained in the exercise with P/mm,
k =X(0, 1/2,0).

Problem 3

Consider a general k-vector of a space group G. Determine its little co-group, the k-
vector star. How many arms has its star? How many full-group irreps will be induced
and of what dimension? Write down the matrix of the full-group irrep of a general
k-vector for a translation, t € Tg.

Optional exercise

Problem 4
Consider the k-vectors I'(000) and k = R (1/2, 1/2, 1/2) of the group P2, 3.

1. Determine the little groups, the k-vector stars, the number and the dimensions
of the little-group irreps, the number and the dimensions of the corresponding
irreps of the group P2; 3. Construct the little group irreps of P2;3 for I'(000) and
k=R (1/2,1/2,1/2);

2. Calculate a set of coset representatives of the decomposition of the group
P2,8 with respect to the little groups of the k-vectors I'(000) and k =
R (1/2,1/2,1/2), and construct the corresponding full space group irreps of
P2, 5.
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Appendix

The Appendix contains the necessary basic data for the exercises of Chapter 5: multi-
plication tables, matrices, character tables, etc. The first section repeats the induction
procedure for the case of normal subgroups of index 2 or 3.

6.1 Special induction procedure for the determination of the
irreps D of a group G

Start from the irreps D® of a normal subgroup H <G, where |G/H| = 2 or 3.
1. Characterize the group-subgroup chain G > H by

(a) choice of appropriate generators for H and G

(b) decompose G into cosets relative to H with coset representative q: ¢ € G

but g ¢ H
i. G =HUqH for index 2
ii. g =HUqgHUqg*H for index 3.

2. Determine the orbits of irreps of H relative to G

e index 2:

— O(D*(H)) = {D*(H) = (D*(H))q} (self-conjugate)

— O(D*(H)) = {D*(H), (D*(H))q}
e index 3:

— O(D*(H)) ={D*(H) = (D*(H))q = (D*(H))q2} (self-conjugate)
— O(D*(H)) = {D*(H), (D*(H))q, (D*(H))q2}

3. Construct the irreps of G

e index 2
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—{D*(H)}

D'(h) = D*(h) = D*(h), he H D'(q)=-D*(q)=U
where U is determined by the conditions
D*(q ' hq)= U "D*(h) U, heH; U’ = D*(¢%)

~ {(D°(H), (D°(#)q)
[ D(n) 0] ' [ O D*(¢?
DW‘( 0 <D8<h>>q>’D(")_<I 0 )
e index 3

- {D*(H)}

D™(h) = D*(h), m=1, 2,3 D" (q) =w™U

where U is determined by the conditions
D’(qg'hq)= U 'D*(h) U, heH,; WwU? = D*(¢°)

— {D*(H), (D*(#))q, (D*(H))g2}

Di(hy O 0 0 0 D(¢%)
Dh=| o (D), O . D= I 0 o©
0 0  (D(h)g oI O

6.2 Multiplication (Cayley) tables

6.2.1 Symmetry elements and multiplication table of the group 3m

54

My

Sm| 1 3. 3;1 Mgy Myy Moy

/ Mz z
fi

Ve I I 3. 37" |\ mm my moy

-1
3z 32 3 1 mOy Mgy  Mgo

- - -1 -1
Moy Y Moy 3z 3z 1 3,2 mgyo moy My,
-1
\ Mgy || Mgz Myo mOy 1 32 3
1
Myo || Mo Moy Mgy 3 1

-1
/ mOy mOy Mgy Myo 32 32
M0
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6.2.2 Symmetry elements and multiplication table of the group 4mm
Mz
Mgy Mz qgmm || 1 2. 4, 47| mg. my. Mg, My
\ / 11 2, 4. 47" | my my my, mg
2.0 2. 1 470 4, | my. my mg Mg,
4. 4. 470 2. 1 |my mg omy. my
My ¢ y o My 4;1 4;1 P 1 2, | Myz Myy My, my,
Mo || Maz My, muz my, | 1 2. 471 4,
My, || My My, Myy mez| 2. 1 4, 47
/ TN Moo | Mee Moz mpe my. | 4. 470 1 2,
e ! e Moz || Moz mMpe my. my. |47 4. 2. 1
6.2.3 Multiplication table of the group 7
Tlle a b clqg r s t|g r* s t
elle a b clqg r s t|qg r*P s t?
alla e ¢ bl|t s r ql|s* t2 ¢ r?
bllb ¢ e a|r qg t s |t s P ¢
cllc b a el|s t q r|rr ¢ t*? s
gllg s t r|qg> s> t2 r*|e b c a
rifr t s ql|t2 P g | b e a c
sils g r t|r? t2 s2 ¢°| c a e b
t|lt r q s|s® qg* r* t2]a ¢ b e
?q®> t2 r? s?|e a b|lg t r s
r’lr* s2 g2 t?|c e b al|s r t gq
s?lls2 P t2 g°la b e c|t q s r
t20t2 > s2 2| b a c e|r qg t
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6.3 Matrix groups; generating matrices

6.3.1 Matrices of the group 3m

10 0 —1 L[ -1
01 1 -1 -1 0
01 1 -1 -1 0
Mgy = ;Mg = S Mg, = :
10 ““lo -1 Y\ 211

6.3.2 Matrices of the group 4mm

1_10'2_—10'4_0—1.4_1_ 0 1Y),

o \o 1)’ B 0 -1 )’ S\ o0 ) A 10 )’
~1 0 1 0 0 —1 0 1

my, = y My, = ; Moz = s My = .
0 1 0 —1 1 0 10

6.4 Character tables

6.4.1 Character table of D, (222) Character table of D3 (32)
Dyle a b c Ds|1(1) 2(3) 3(2)
A |1 1 1 1 A, 1 1 1
B, |1 1 -1 -1 A, 1 1 —1
By |1 —1 1 -1 E 2 —1 0
B:|1 -1 —1 1
6.4.2 Character table of 4 Character table of 4mm
4 |1 2 4 43 dmm | 1(1) 1(2) 2(4) 2(mg.) 2(my)
A |l 1 1 A, 1 1 1 1 1
B |1 1 -1 -1 A, 1 1 1 —1 —1
'El1 -1 —i i B, 11 -1 1 ~1
El1 -1 i —i B, 11 -1 —1
E 2 =2 0 0 0
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6.4.3 Character table of T

The value of € is
exp 2mi/3.

T |1(e) 3(a) 4(q) 4(¢*
A 11 1 1
'E 1 1 € €
El 1 1 e

T 3 -1 0 0

6.5 Procedure for the construction of the irreps of space

groups.

The main steps for constructing the irreps of space groups can be summarized as

follows

1. Space-group information

(a) Decomposition of the space group G in cosets relative to its translation
subgroup 7T, see IT A (1996)

g =TU (WQ, ’U)Q)TU oo U (Wp, ’U)p)T
(b) Choice of a convenient set of generators of G, see I'T A (1996)

2. k-vector information

(a) Choice of a k vector (from the rep domain ® of the BZ). The coefficients of
the k vector have to be referred to the dual basis of that basis relative to
which the space group is defined:

(b) Determination of the little co-group Gk of k:
G =(W.eG: k=kW,+ K, KeL*)

(c) Determination of the k-vector star x(k)

(k) = {k, ko, ..

., kg ), with k = ij, 7 =1, ... s, where Wj are the

coset representatives of G relative to ?k.
(d) Determination of the little group Gk
— ~ Kk
GK={(W;, ®,)eG: W,€G}

(e) Decomposition of G relative to gk

An obvious choice of coset representatives of G relative to gk is the set of

elements {¢;

(Wi,@i),izl, NP 8}

— ) . _k
where W, are the coset representatives of G relative to G
G =Gxu Wy, wy)GRU ... (W, w,)G¥

3. Allowed irreps of gk
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(a) If Gk is a symmorphic space group or k is inside the BZ, then the non-
equivalent allowed irreps D7 of GX are related to the non-equivalent irreps
Bk’i of ?k in the following way:

Dk’i(wz‘, w;) = exp —(ikWi)ﬁkJ(ﬁv’i)

(b) If GKis a non-symmorphic space group and k is on the surface of the BZ,

then:

i. Look for a symmorphic subgroup H}f (or an appropriate chain of normal
subgroups) of index 2 or 3

ii. Find the allowed irreps Dl;_’ti of 7—[%)(, i. e. those for which is fulfilled
0

k,i
DH0
gk
iii. Determine the allowed irreps of Gk using the results for the induction
from the irreps of normal subgroups of index 2 or 3

(I, t) = exp—(ikt) I and distribute them into orbits relative to

4. Induction procedure for the construction of the irreps DK of G from the allowed
irreps Dk of g
The representation matrices of D*k’i(g) for any element of G can be obtained if

the matrices for the generators {( W, w;), [ =1, ..., k} of G are available (step
la).

(a) Construction of the induction matrix.
The elements of the little group G¥ = {(W;, w;)} (step 2d) and the coset

representatives {qi, ..., qs} of G relative to Gk (step 2e) are necessary for
the construction of the matrix M (W, w,)

‘ (W, wy) ‘ 4 | g ‘ g (Wi, w) ‘ g (Wi, wi)g; ‘ M(Wy, wi)i; # 0 ‘

(b) Matrices of the irreps Dk of G:
DX (W, wi)i g = MW, )i D (W, 8,00,
where (W, w,) = q; ' (W, w;) g;.

All irreps of the space group G for a given k vector are obtained considering
all allowed irreps DK™ of the little group GX obtained in step 3.
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6.6 Space-group data

Figure 6.1: ITA space-group data for P4mm (selection)

1
P 4 mim C41. dmm Tetragonal
No. 99 Pdmm Patterson symmetry P4/ mmm
Q0 ©O
O O 0 _ ©
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Figure 6.2: ITA space-group data for P4bm (selection)
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Figure 6.3: ITA space-group data for P2;3 (selection)
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Chapter 7

The Bilbao Crystallographic Server

The Bilbao Crystallographic Server is a web site with crystallographic databases and
programs that can be used free of charge from any web browser via Internet. The server
is on-line since 1998 and new programs are continuously added to the available tools.
The server gives access to data in International Tables for Crystallography, Volume A:
Space group symmetry (abbreviated as ITA) and data of maximal subgroups of plane
and space groups as listed in International Tables for Crystallography, Volume Al:
Symmetry relations between space groups. We have also started with the development
of a database for subperiodic groups: the basic crystallographic data of the layer and
rod groups (International Tables for Crystallography, Volume E: Subperiodic groups
and their maximal subgroups are already accessible on the server.

The accompanying software is divided into several shells according to its complexity
and proximity to the data contained in the database kernel. There are simple tools for
retrieving data directly from the database such as generators and general positions,
Wyckoff-position data and maximal subgroups. In addition, we have developed differ-
ent applications which are essential for problems involving group-subgroup relations
between space groups: subgroups and supergroups of space groups, graphs of maximal
subgroups for an arbitrary group-subgroup pair, Wyckoft-position splitting schemes for
group-subgroup pairs, etc. Detailed descriptions of the set of databases available on
the server and the shell formed by the crystallographic computing programs (Aroyo
et al., 2006a).

In this Chapter we report on the databases and programs facilitating the application of
representation theory to specific problems of solid-state physics and crystallography-
related fields. The retrieval tool POINT gives access to a database with basic informa-
tion on irreducible representations (abbreviated as irreps in the following) of crystallo-
graphic point groups like character tables, irrep multiplication tables, tables of tensor
representations, etc.. The server includes also the so-called k-vector or Brilloiun-zone
database. It consists of Brillouin-zone figures and tables for all 230 space groups of the
wave-vectors symmetry types which are fundamental for the classification of the space-
group irreps. The computing packages support certain essential (and more involved
from a mathematical point of view) steps in the related group-theoretical studies.
The server offers access to the basic modules for handling space-group representations

64
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REPRES, it enables the study of the correlations between irreps of group-subgroup re-
lated space groups CORREL and the decomposition of Kronecker direct products of
space-group irreps DIRPRO. In the following, the group-theoretical background of the
developed programs are only briefly outlined (for more details the reader is referred to
Aroyo etc., 2006b). Illustrative examples explain the necessary input data and provide
details on the output results.

7.1 Databases and retrieval tools

7.1.1 Point-group representations

The information about the 32 crystallographic point groups plays a fundamental
role in many applications of crystallography. In the literature, there exists a lot of
information about crystallographic point groups and their representations. Some
complete tables are given in Koster et al. (1963), Bradley & Cracknell (1972),
Altmann & Herzig (1994) (and the references therein). A selection of this data has
been recalculated and it is now available online via the Bilbao Crystallographic Server.
The point-group databases are part of the core shell of the server. The information
about the irreps of the 32 point groups can be obtained from the program REPRES (cf.
Section 7.2.1 ) for the particular case of xk = I'(0,0,0). All generated point-group
data has been stored as an XML database of the server. The retrieval tool POINT
displays a set of several tables for each of the 32 crystallographic point groups which
are specified by their international (Hermann-Mauguin) and Schoenflies symbols:

1. Character table. The character table provides the characters of the ordinary
(vector) irreps of chosen point group. The irreps are labelled in the notation of
Mullikan (1933) and by the I' labels given by Koster et al. (1963). The matrices of
the degenerate irreps as calculated by REPRES are also accessible. The number of
point-group elements in a conjugacy class is indicated by the listed multiplicity.
In addition, the transformation properties of the cartesian tensors of rank 1
(vectors and axial vectors) and 2 are displayed. (The tensor of rank 0 belongs
always to the totally symmetric irrep and is not listed explicitly). Cartesian
tensors that span two- or three-dimensional irreps are joined by brackets.

2. Subgroup table. The point-group types of the subgroups of a point group are
listed with the corresponding indices in the initial point group.

3. Irrep multiplication table. The table shows the decomposition into irreducible
constituents of the Kronecker (direct) product of any pair of point-group irreps.

4. Tensor representations. The table lists the decompositions into irreducible con-
stituents of representations related to some important tensors (and their powers),
such as the vector V' (polar) or the pseudovector A (axial), their symmetrized
[V2] or antisymmetrized squares, etc.

5. Selection rules for fundamental transitions. The table displays the selection rules
for infrared and Raman electronic transitions. The data in the first row of each
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table (specified by the trivial irrep label) corresponds to the usual infrared and
Raman selection rules.

6. Subduction from the rotation group irreps. Given a (vector) representation of the
rotation group of dimension 2/ + 1, [ = 0,...,9, the table lists the point-group
irreps which appear in its subduction to the chosen point group.

7.1.2 k-vectors and Brillouin zones

The determination, classification, labeling and tabulation of irreducible representa-
tions (irreps) of space groups is based on the use of wave vectors k. The k-vector
database available on the Bilbao Crystallographic Server contains figures of the Bril-
louin zones and tables which form the background of a classification of the irreps of
all 230 space groups. In this compilation the symmetry properties of the wave vectors
are described by the so-called reciprocal-space groups which are isomorphic to sym-
morphic space groups Wintgen, 1941, see also Aroyo and Wondratschek, 1995. This
isomorphism allows the application of crystallographic conventions in the classification
of the wave vectors (and henceforth in the irreps of the space groups). For example,
the different symmetry types of k-vectors correspond to the different kinds of point
orbits (Wyckoff positions) in the symmorphic space groups; the unit cells with the
asymmetric units given in ITA can serve as Brillouin zones and representation do-
mains, etc. The advantages of the reciprocal-space group approach compared to the
traditional schemes of wave-vector classification can be summarized as follows:

e The asymmetric units given in ITA serve as representation domains which are
independent of the different shapes of the Brillouin zones for different ratios of
the lattice parameters.

e For the non-holohedral groups the representation domain is obtained from that
of the corresponding holohedral group by extending the parameter ranges, not
by introducing differently labeled special k-vector points, lines or planes of sym-
metry.

e A complete list of the special sites in the Brillouin zone is provided by the Wyckoff
positions of ITA. The site symmetry of ITA corresponds to the little co-group
of the wave vector; the number of branches of the star of k follows from the
multiplicity of the Wyckoff position.

e All k-vector stars giving rise to the same type of irreps are related to the same
Wyckoff position and designated by the same Wyckoff letter.

The available figures and the wave-vector data based on the reciprocal-space group
symmetry are compared with the representation domains and the k-vector tables of
the widespread tables of space-group representations by Cracknell, Davies, Miller and
Love, 1979 (referred to as CDML).

The retrieval tool KVEC of the k-vector database uses as input the ITA-number of the
space group. The output contains wave-vector tables and figures. There are several
sets of figures and tables for the same space group when its Brillouin-zone shape
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depends on the lattice parameters of the reciprocal lattice. The k-vector data are the
same for space groups of the same arithmetic crystal class.

In the tables, the k-vector data as listed by CDML are compared with the Wyckoff-
position description as given in ITA. Each k-vector type is specified by its label and
parameters. The corresponding Wyckoff positions are described by their Wyckoff
letters, multiplicities, and site symmetry groups. Their parameter description contains
also the parameter ranges chosen in such a way that each orbit of the Wyckoff position
of ITA, i.e. also each k-orbit, is listed exactly once. No ranges for the parameters are
listed in CDML. Symmetry points, lines of symmetry or planes of CDML which are
related to the same Wyckoff position are grouped together.

In the figures, the Brillouin zones of CDML and the conventional unit cells of ITA are
displayed. The asymmetric units play the role of the representation domains of the
Brillouin zones and they are chosen often in analogy to those of ITA. The names of
k-vector points, lines, and planes of CDML are retained in this listing. New names
have been given only to points and lines which are not listed in CDML.

Example: Brillouin zones and special k-vectors of the space group F222. The
following example illustrates the relation between the traditional and the reciprocal-
space group descriptions of the wave-vector types of space-group irreps. The included
figures and tables form part of the output of the access tool KVEC.

The k-vector types of the space group F222 ~ D] are described with respect to the
corresponding reciprocal space group which is isomorphic to 1222 ~ D§. Depending
on the relations between the lattice constants a, b and ¢, there are two topologically
different bodies of the Brillouin zone displayed in Fig. 7.1 and Fig. 7.2 by thin black
lines; the first one has 24 vertices, 36 edges and 14 faces, the other has 18 vertices,
28 edges and 12 faces. The shape of the unit cell of ITA is always a parallelepipedon
with 8 vertices, 12 edges and 6 faces. Similarly, the representation domains of CDML
are more complicated than the asymmetric units of ITA, see Fig. 7.1 and Fig. 7.2.

The representatives of the k-vectors symmetry points or of symmetry lines, as well as
the edges of the representation domain of CDML and of the chosen asymmetric unit
are brought out in colors. A k-vectors symmetry point is designated by a red or cyan
if it belongs to the asymmetric unit or to the representation domain of CDML. Points
listed by CDML are not colored if they are part of a symmetry line or symmetry plane
only. The color of the line is pink for an edge of the asymmetric unit which is not a
symmetry line and it is red for a symmetry line of the asymmetric unit. The color of
the line is brown with the name in red for a line which is a symmetry line as well as
an edge of the asymmetric unit. The edges of the representation domains of CDML
(displayed in the same figure) are colored in light blue. The corresponding symmetry
points and lines are colored cyan. Edges of the representation domain or common
edges of the representation domain and the asymmetric unit are colored dark blue
with the letters in cyan if they are symmetry lines of the representation domain but
not of the asymmetric unit.
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Figure 7.1: Brillouin zone and asymmetric unit and representation domain of CDML for the
space group F222 ~ DI: a72 < b 24+c 2 b2 <c 2 +a2and ¢ 2 < a2+ b2, Reciprocal-
space group [1222*, No. 23. The representation domain of CDML is different from the
asymmetric unit.

K, A
Yo 19 L
Gl //C:h/\o

Figure 7.2: Brillouin zone and asymmetric unit and representation domain of CDML for the
space group F222 ~ D} : ¢2 > a=2 + b=2. Reciprocal-space group 1222*, No. 23. The
representation domain of CDML is different from the asymmetric unit.
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K-vector label Wyckoff Position ITA description
Primitive Conventional-ITA ITA Coordinates
GM 0,0,0 0,00 a 2 222 00,0
T 1,112,112 0,1.1 b 2 222 0,172,112
T, b | 2 222 1/2,0,0
Z 172,112 ,0 0,01 c 2 222 0,0,172
Y 1/2,0, 1/2 0,1.0 d 2 222 0.1/2,0
Y~Y2 d 2 222 12,0112
SM 0,u, uex 2u,0,0 e 4 2. %0,0:0<x<=sm,
U 1, 1/2+u, 1/2+u ex 2u,1,1 e 4 2. x1/2,1/2: 0 <x<uy
LJ»SMw =[SM0 T2] e 4 2. x,0,0: 1/‘2-un=srn0 <x<1/2
SM+SM1=[GM Tz] e 4 2. x,00:0<x<1/2
A 1/2, 1/2+u, u ex 2u,0,1 f 4 2. %0,12: 0 <x<=a,
c 112, u, 1/2+u ex 2u,1,0 f 4 2., x1/20:0<x<cy
C~A=[A) Y,] | 4 2. X012 1/2-c =8, <x <112
A+AS[Z Y] f 4 2. x0,12:0<x<1/2

Figure 7.3: List of k-vector types (selection) for the space group F222 ~ DI: a2 < b2 +
c 2,72 < ¢ 2+a2and ¢ 2 < a"2+b~2. Reciprocal-space group 1222*, No. 23 (¢f Fig. 7.1).

To save space we have included only part of the list of k-vector relations for the
space group F'222 ~ DI in the table shown in Fig. 7.3 (a screen-shot of the output of
the access tool KVEC), corresponding to Fig. 7.1. The k-vector parameters of CDML
(second column) of the table in Fig. 7.3 are different from those of ITA (last column)
because in CDML the data are always referred to a primitive basis, whereas in ITA
they are referred to a centered basis if appropriate, e.g. in F and [ lattices. The
coefficients of the k-vectors with respect to the basis that is dual to the conventional
(centred) setting used in ITA, are listed under the ‘Conventional ITA’ column. The
parameter ranges (last column) are chosen such that each k-vector orbit is represented
exactly once.

One takes from the table given in Fig. 7.3 that different k labels of CDML (first
column) may belong to the same type of k vectors, i.e. they give rise to the same
type of irreps. Due to the special shape of the representation domain of CDML the
special wave-vector line corresponding to the Wyckoff position 4 f 2.. (fourth column)
is split into two parts, A and C. In the ITA description A U C corresponds to one
line [ZY5], (z, 0, 1), with 0 < z < 1. The splitting of the 4 f line into two parts is a
consequence of the Brillouin-zone shape for the specific values of the lattice parameters.
This is confirmed from Fig. 7.2 where the corresponding special line C' is not split.

7.2 Representations of space groups

There exist several reference sets of tables of space-groups irreps (see e.g. CDML,
and the references therein). However, the available data have important drawbacks
related to the lack of full space-group representations due to the limitations and/or
specificity in the choice of the k-vectors. In addition, the used space-group settings
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are often not compatible with those of ITA. These disadvantages are overcome by the
program REPRES which computes the irreps of space groups explicitly: For any space
group G and a k-vector, the corresponding little group G*, the allowed (little-group)
irreps and the matrices of the full-group irreps are constructed. As part of the working
environment of the Bilbao Crystallographic server, the program REPRES provides the
irrep data in a format suitable for its further use as input for other programs on the
server.

REPRES calculates the irreps of space groups following the algorithm based on a normal-
subgroup induction method of constructing the irreps of a group G starting from those
of a normal subgroup H <1G. The main steps of the procedure involve the construction
of all irreps of H and their distribution into orbits under G, determination of the
corresponding little groups and the allowed (small) irreps and finally, construction of
the irreps of G by induction from the allowed irreps.

The application of the general normal-subgroup induction procedure in the case of
space groups is straightforward. A normal subgroup of every space group is its trans-
lation group T . The irreps of T are well-known and their distribution into orbits, the
determination of the related little groups and the induction of the space-group irreps
follow closely the general scheme. The most involved step in the procedure is the
determination of the allowed irreps of the little group. These are calculated in REPRES
using the fact that all space groups are solvable groups, i. e. for every space group one
can construct a composition series G > Hy > Ho ... > T such that all factor groups
H;/Hii1 are cyclic groups of order 2 or 3.

7.2.1 The program REPRES

Input Information

e Space group data: As an input the program needs the specification of the space
group G which can be defined by its sequential /TA number. Here, as well as in
the rest of programs related to space-group representations, the following ITA
conventional settings are chosen as default: unique axis b setting for monoclinic
groups, hexagonal azes setting for rhombohedral groups, and origin choice 2 for
the centrosymmetric groups listed with respect to two origins in ITA. The pro-
gram REPRES can treat space groups in unconventional settings, once the trans-
formation matrix-column pair (P, p) to the corresponding conventional setting
is known. The 3x3 square matrix P =|| P; || transforms the conventional basis
(a, b, c) of G to the non-conventional (a’, b’ c’) one:

(a',b',c') = (a,b,c)P. (7.1)

The column p = (p1,p2, p3) of coordinates of the non-conventional origin O’ is
referred to the conventional coordinate system of G.

e k-vector data: The k-vector data can be introduced in two different ways: either
by choosing the k-vector directly from a table, or by keying in the k-vector
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coefficients from which the program identifies and assigns the corresponding k-
vector label according to the classification scheme of CDML. This label is used to
designate the irreps of the little and space groups. The program accepts k-vector
coefficients given with respect to different coordinate systems of the reciprocal
space. For its internal calculations REPRES uses k-vector coefficients (ki, k2, k3)
referred to a basis (a*,b*,c*) which is dual to the conventional ITA settings
of the space groups (called conventional k-vector coefficients). The program
accepts also k-vector coefficients referred to a primitive basis (p3, ps, p§) of the
reciprocal lattice as given for example, in CDML tables of space-group irreps.
The relation between the conventional and primitive k-vector coefficientsindex
are given in Table 7.1.2. If a non-conventional setting for the space group is
chosen (7.1), then the corresponding 'non-conventional” k-vector coefficients

(k’i, kév ké) = (k:h k:27 k:3)P7 (72)

can be given as input data. Note that the program does not accept variables
(free parameters) as coefficients of the wave vector.

The Brillouin-zones database with wave-vector tables for all 230 space groups and
figures of the Brilloiun zones is available on the Bilbao Crystallographic server.

Output Information
The output produced by REPRES contains the following data:

1. Information on the space group G:

e non-translational generators of G listed as matrix-column pairs (W ,w), i.e.
in (3 x 4) matrix form. The sequence of generators follows that of /TA for
the conventional settings of the space groups;

e list of translational coset representatives (W ,w) of G, given in (3 x4) matrix
form. The numbers coincide with the sequential numbers of the general-
position coordinate triplets listed in ITA.

2. k-vector data: The program lists the input values of the k-vector coefficients fol-
lowed by the corresponding conventional coefficients (k, ko, k3). The coefficients
of the arms of the wave-vector star *k are referred also to the basis that is dual
to the conventional (default) setting of the space group.

3. Information on the little group G*:

e a set of coset representatives of G with respect to the little group G;

e a set of non-translational generators and a set of translational coset repre-
sentatives of G¥ given as (3x4) matrices;

e little-group irreps presented in a matrix form for the translational coset
representatives of G¥ in a consecutive order. The little-group irreps are
labeled following the convention of CDML.
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4. Full-group representations: The block of the full-group irreps starts with a list of
the characters of the full-group irreps for all translational coset representatives
of G followed by a list of the physically irreducible representations. (If an irrep
is complex and not equivalent to any real irreducible representation, then the
physically irreducible representation is formed by the direct sum of the irrep and
its complex conjugate. Such representations are designated by two irrep symbols
that follow each other. If an irrep is real, or equivalent to a real one, then the
physically irreducible representation coincides with the irrep and the symbol of
the physically irreducible representation corresponds to that of the irrep.)

Optionally, the program gives also the full group irreducible representations of
the non-translational generators of the space group in a block-matrix form: for
a given representation and a generator, the program prints out the induction
matrix whose non-zero entries, specified by its row and column indices, indicate
a matrix block corresponding to a little-group matrix.

Example: Irreps of P4bm for k = X(0,1/2,0)

The INPUT data consists in the specification of the space group P4bm by its ITA
number, No.100, and the data for k-vector coefficients, k = X(0,1/2,0). (In all
space groups with primitive lattices, the k-vector coefficients (k,1, kp2, kp3), referred
to a primitive basis of the reciprocal space (CDML), coincide with the conventional
k-vector coefficients, cf. Table 7.1.2.)

The discussion of the OUTPUT follows the order of the results as they appear in
the output file. All space-group elements (W, w) are given in a matrix-column form
consisting of a (3 x 3) matrix part W and a (3 x 1)-column part w:

Wi Wi Wiz wy
<W7 'w) = Wao Wiy Was we ;
Ws1 Wsy Wiz ws

1. The Space-group information block contains the following data:

(a) The generators of P4bm (with the exception of the generating trans-
lations) are listed in the same sequence as they appear in I[TA:
(1,0),(2.,0), (4., 0), (my,, 7), with 7 = (1/2,1/2,0)".

(b) Decomposition  of  P4bm  relative to its  translation  sub-
group with coset representatives as given in ITA:
(1,0), (2., 0), (4., 0), (42, 0), (my, 7), (Mg, ), (Mg, T), (Mg, 7).

2. k-vector information block gives the information on:

(a) The input k-vector coefficients X (0, 1/2, 0) followed by the corresponding
conventional coefficients.

(b) The k-vector star: *X = {(0, 1/2, 0), (1/2, 0, 0)}.

!To make the description more compact we use a symbolic notation for the space-group elements.
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(¢) The little group G* = P2.ba is specified by the coset representatives of
its decomposition with respect to the translation subgroup: (1, o), (2., o),

(my,, 7), (M., 7). The little co-group g = {1, 2, m,,, m,,} is iso-
morphic to the point group 2.mm.

(d) The coset representatives of the decomposition of P4bm relative to P2,ba
P4bm = P2,ba + (4 ,, 0)P2.ba

3. Allowed irreps of G*

As the little group G* is non-symmorphic and the k vector is on the surface of
the Brillouin zone, it is not possible to relate directly the allowed irreps of P2.ba
with the linear irreps of the little co-group 2mm. The program determines the
allowed irreps by constructing the composition series for the little group P2.ba:

P2.,bar> P2,>T

The allowed irreps of P2.ba are obtained in two steps:

(a) Construction of the allowed irreps of P2, starting from those of the trans-
lational subgroup 7

P2. | (1,0) (20| (1,

D?ézl 1 1 | exp—(imny)
Dféﬁ 1 —1 |exp—(imny)

Here, t is the column of coefficients (ny, na, ng).

(b) From the conjugation of the elements of P2, under (m,,, 7) follows that
the two allowed irreps of P2, form an orbit of conjugate irreps, i.e. there is
just one allowed two-dimensional irrep of P2.ba.

P2.ba H (2, O) (myz7 T) (m:BZ7 T)

(o) () ()

The program lists the corresponding irrep matrices following the consecu-
tive order of the translational coset representatives of the little group. The
(complex) matrix elements are specified by their moduli and phase angles in
degrees [o]. For example, the matrix of the element (m,., 7), listed under
No.4, has the form:

DX,I

(0.000, 0.0) (1.000, 180.0)
(1.000, 0.0) (0.000, 0.0) /°



CHAPTER 7. THE BILBAO CRYSTALLOGRAPHIC SERVER 74

4. Full-group irreps The full-group irrep *X, 1 coincides with the physically irre-
ducible representation, and its characters for all translation coset representatives
of P4bm are listed at the beginning of the full-group irrep block. In addition,
the matrices of the full-group irreps for the non-translation generators are pre-
sented in a block-matrix form. The program lists separately the induction matrix
M (W w) and the corresponding blocks of the little-group representation ma-
trices specified by the row-column indices of the non-zero entries of M (W, w).
For example, the matrix of the full-group irrep for the generator (4., o) of P4bm
(No.3 in the list of generators)

o =
)

D*X71<4z, O) — 177

0

is presented as a (2 x 2) induction matrix

*X, 1 _ 0 1
M (4z7 O) - <1 0)7

with the following (2 x 2) blocks:

1. . . .
Block (12) — [ (1000, 0.0) (0.000,00) ).
(0.000, 0.0) (1.000, 180.0)
1.000, 0.0) (0.000, 0.0
Block (2,1) = (  0.0) , 0.0) :
(0.000, 0.0) (1.000, 0.0)

7.3 Correlations between the representations of group-
subgroup related space groups

7.3.1 The problem

For different physical applications it is important to know the compatibility relations
(known also as correlations) between the representations of group-subgroup related
crystallographic groups ‘H < G. For their calculation it is sufficient to consider the
irreps of G. The problem can be formulated as follows: Given an irrep Dg of G, how
does the subduced representation D = Dg | ‘H decompose into irreps of Dy of H?
This subduced representation D¢ is in general a reducible one and can be transformed
into a direct sum of irreps Dy of H by a suitable unitary transformation S

DS = S[®E(s | i) ® D}, (7.3)
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where E(s | i) is the unit matrix of dimension (s | ), and (s | 4) is the number of

times the irrep D?, is contained in the Dg (the so-called subduction coefficients). The
matrix S is known as the subduction matrix.

The problem of subduction coefficients and subduction matrices for crystallographic
point groups is completely solved. For example, data on subduction coefficients for
the irreps of point groups has been tabulated long ago (Koster et al., 1963). However,
similar results on subduction quantities for crystallographic space groups are only
partially known. The difficulties in their tabulation are related to the great number and
variety of space-group representations and possible group-subgroup relations between
space groups.

The software package CORREL computes the CORRELations between representations
of a crystallographic space group G and those of its subgroups H, including the multi-
plicities of D%, in Dg | H . The module of the program for the determination of the
subduction matrices S which relate the bases of the irreducible constituents D3, to
those of the subduced representation Dg | H, Equ. (7.3), is still under development
and for the moment the calculation of S is only optional.

7.3.2 The method

The space-group formulation of the subduction problem is straightforward. The sub-
duced representation D**9% | H is in general a reducible one and can be transformed
into a direct sum of irreps D***'J of H by a suitable transformation S:

(D" | H)S = S[GE(xkg, i | ¥ky, j) ® D], (7.4)

The direct sum is over all stars xky; of H, and over all allowable irreps D***J which
may arise for a given xky. The subduction coefficients (xkg, i | *ky, j) are integers
and denote the multiplicity of irreps D***'7 in the subduced representation. The rows
of the subduction matrix § are labeled by the row-indices of D**¢:?. The columns of
the subduction matrix are specified by a triple of indices indicating the irrep D**#:J,
its multiplicity and a row index. The coefficients of a given column of S determine
the linear combination of the basis functions of D**9'¢ that transforms as the corre-
sponding row of D*#J.

We are interested in the calculation of the subduction coefficients and the subduction
matrix S.

In order to determine the subduction coefficients (xkg, 7 | *ky, j) one can proceed by
rewriting the defining equation (7.4) using the character systems y**9* of D**¢>% and
kg of DRI

X (h) = (xkg, i | #kay, §)X™ 7 (h), h € H. (7.5)

The application of the orthogonality properties of the characters of the irreps D*<#:J
to Equ. (7.5) results in an expression for the subduction coefficients that is difficult to
use directly: it would involve a sum over all elements of the subgroup. An alternative
to the conventional routine for determination of (xkg, i | *ky, j) follows directly from
their definition. Although the sum in Equ. (7.4) is over all stars xky;, in fact only
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representations from a small number of stars are contained in the subduced representa-
tion. The determination of the splitting of the star xkg of G into stars xky; of H is the
first step in the procedure for the determination of the subduction coefficients. Due
to the decomposability of the subduced representations into irreducible constituents
(7.4) the star xkg is decomposed into entire stars xky. One can formally introduce
*k-subduction coefficients (xkg | *ky) to describe the splitting of the star xkg:

skg = > (xkg | #ka)xka, (7.6)

where the sum is over the stars xky that occur in xkg. The coefficients (xkg | *ky,)
are integers and they relate in an obvious way the number of arms sy, and sy, of the
stars xkg and xky:

Skg = ) _(+kg | #k)sic - (7.7)

The *k-subduction coefficients are determined by direct inspection: starting from an
arbitrary arm of xkg one determines all those arms kg which belong to the correspond-
ing star xky. If any vectors kg are left one continues with the procedure until all xkg
arms are distributed into xk4 stars.

The determination of the *k-subduction coefficients reduces the sum in Equ. (7.5),
and in this way simplifies the calculation of the subduction coefficients. Consider a star
sky, with (xkg | ¥ky) # 0 whose ny,, irreps are of dimensions d***/= dim (D***7).
A set of linear algebraic equations with the subduction coefficients as unknowns is
obtained taking Equs. (7.5) for different elements of H. Their number equals > ny,,,
where the sum is over the number of distinct xky, stars that occur in xkg.

Once the subduction coefficients are determined it is possible to construct the block-
diagonal representation ®E (xkg, i | *ky, j) ® D™ equivalent to the subduced
representation (D**¢'* | H). The set of matrix equations (7.4) for the elements of H
forms a system of linear equations with the elements of the subduction matrix S as
unknowns. For the explicit calculation of the elements of the subduction matrix it is
convenient to split and rewrite Equ. (7.4) for each D***J separately:

(D*kg,i J/ H)S*kH’j — S*kHJD*kHJ . (78)

Here the rectangular matrices §™*7 consist of d***7 columns of § and correspond to
the elements of the subduction matrix associated with the irrep D***J. The number
of independent solutions of (7.8) equals the multiplicity of D***J in the subduced
representation. One should note that: (i) we are interested only in the nonsingular
solutions for the subduction matrix, and (ii) the freedom in the determination of S
follows from the Schur lemma for reducible representations: the subduction matrix §
is determined up to a matrix belonging to the commuting algebra of the representation
DE (xkg, i | xky, j) @ D*I,
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7.3.3 The program CORREL

As Input data the program requires the groups G and H specified by their ITA-
numbers, and a transformation matrix-column pair (P, p) relating the conventional
(default) bases of the group and the subgroup, Equ. (7.1). The k-vector coefficients
could be referred to the primitive bases of reciprocal space (of the supergroup) as
found in CDML. Another possibility for the cases of centered lattices is to refer the
k-vector to the centered basis dual to the conventional setting of the space group, i.e.
the conventional k-vector coefficients (c¢f. Section 7.2.1).

The Output consists of five main subblocks. The listed data starts with information
on the studied group-subgroup pair of space groups G > H including their space group
numbers and lattice types, lists of generators and translational coset representatives
(W, w) given in (3 x 4) matrix form, and the transformation matrix-column pair
(P, p). The xkg vector is specified by its input coefficients and those referred to the
dual basis of the default setting of G, followed by a list of the arms of xkg.

Under the heading 'INFORMATION FOR THE SPLITTING’ follows a block con-
taining information on the splitting of the star xkg into wave-vector stars ks of the
subgroup, cf. Equ. (7.6).

Next follow two blocks of the same type for the group and the subgroup (with the
headings INFORMATION FOR THE SUPERGROUP’ and INFORMATION FOR
THE SUBGROUP’), containing information on the relevant little groups, the allowed
little-group irreps, the chosen coset representatives of the decomposition of the group
with respect to the little group and the full space-group irreps (optional).

The last block of the Output, entitled 'SUBDUCTION PROBLEM’, contains the
subduction coefficients and the corresponding subduction matrices for each irrep of
the supergroup for the considered xkg vector.

Example The program CORREL is illustrated by the calculation of the subduction co-
efficients and matrices for the irrep D***' of P4bm (k = X(0,1/2,0)) in its subduction
to the subgroup P2 of index 8.

The Input data includes:

1. The specification of the group-subgroup pair by the corresponding IT'A num-
bers of the involved space groups and the transformation matrix (P, p) which
relates the conventional bases of G and H. The transformation matrices for
a given group-subgroup pair and their index can be obtained from the pro-
gram SUBGROUPGRAPH available on the Bilbao Crystallographic Server. There
are seven subgroups P2 (No.3) of P4bm (No.100) of index 8 distributed into 4
different classes of conjugate subgroups. Here, we consider the symmetry break
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P4bm > P2 with

0010
(P,p) = 2 0 0|3
01 0/0

2. The wave-vector X is specified by its primitive coefficients (0, 3,0).

In the first block of the Output file the program lists the generators, general positions
of P4bm and P2 as (3x4) matrix-column pairs. The transformation matrix (P, p) is
printed in the same form. The coefficients of its translation part are printed as multi-
ples of 5-(e.g. 3 is listed as 12). The two arms of *X are given by their conventional
coefficients *X= {(0, 3,0), (3,0,0)}.

The splitting of the *X in the subgroup wave-vector stars *S1 and *S2, Equ. (7.6),
is indicated in the next block:

*X = 1.%S1 ® 1.xS2 |

where each xky is preceded by its multiplicity in *kg. In our case (X | *S1) = (xX |
xS2) = 1. The star *S1 = (1,0, 0) is equivalent to the I wave vector of P2. The star
xS2 = (0,0, %) is also a special one and corresponds to the point Z in CDML notation
(cf. the Brillouin-zone database available on the Bilbao Crystallographic Server).

The next block includes the data on the little group and (optionally) the full-group
irreps of P4bm for the X wave vector. The little and full-group irreps of *S1 and *S2
of the subgroup P2, relevant for the subduction, are given in the block 'Information
about the subgroup’. The presentation of the data follows the form and the sequence
already discussed and illustrated in Section 7.2. There is one 4-dimensional full group
irrep (*X)(1) (¢f. the example of the program REPRES). For each subgroup star *S1
and *S2 there exist two irreps labeled as (*Si)(j), i,j=1,2, i.e. there are altogether 4
one-dimensional irreps of P2 which can take part in the decomposition of (*X)(1) (cf.
Equ. (7.4)). The irrep (*S1)(1) corresponds to the identity irrep of P2.

The last block of the output file includes the subduction coefficients (xkg, i | *ky, 7)
and the subduction matrices S. The subduced irrep (*X)(1) J P2 splits into the four
irreps of the subgroup, each appearing with multiplicity 1:

(xX)(1) | P2 (7.9)
~ (*S1)(1) @ (*S1)(2) @ (*S2)(1) @ (*S2)(2) .

The subduction matrix S is shown in two parts: a matrix with numerical values gives
one possible (non-zero) solution for the subduction matrix. The irrep indices of its
columns follow the order of the irreps in the direct-sum decomposition of D**¢:¢ | H
(Equ. (7.9)). The block-diagonal (unitary) matrix with complex parameters expressed
by letters, is related to the uniqueness of S. The freedom in the determination of the
rectangular matrices S§***J (7.8) is given by the corresponding sub-blocks. Their
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dimensions equal the multiplicities of D***J in D*%¢>* | . In our example all irreps
of the subgroup in Equ. (7.9) are of dimension 1 and the corresponding rectangular
matrices are reduced to single columns. The freedom in their determination is given
by single complex numbers (or phase factors if the normalization condition is imposed)
as the multiplicities of the irreps (xSi)(j) in (xX)(1) equal 1.

7.4 Direct product of representations

7.4.1 The problem

There are a number of physical applications of the representation theory of space
groups that are based on the analysis of the Kronecker product of space-group rep-
resentations. A well-known example is related to the determination of selection rules
for various physical processes in crystalline materials as infrared absorption, Raman
scattering, neutron scattering, electron scattering, etc (see e.g. Birman and Berenson
(1974), Cracknell (1974)). The essential step of the selection-rules derivations consists
in the reduction of Kronecker products of space- group representations into irreducible
constituents. Consider the irreps D™ and D*"™ of the space group G spanned

by the sets of basis functions {¢f™, ks’m} and {(bkl’ , - }2 The set
of all bilinears {gbkl gb]fl’m Lo, O mgbrf” } form a carrier space of the the so-called

Kronecker (direct or tensor) product representation D**™ D™ of G Tt is in
general a reducible representation with dim (D™™ @ D™ = (s x r,,)(s' x 7).
In order to decompose the direct-product representation into irreducible constituents
one first determines the so-called reduction coefficients of the Clebsch-Gordon series
(xkm, *k'm/|xk”m”) (in the following referred to as reduction coefficients for short).
The reduction coefficients are integers that indicate the irreps D™ that appear in
the decomposition of the Kronecker product:

D DR (7.10)
~ @*k”,m” [E<*km, *k/m/|*k”m") ® D*k”’m”] .
In order to complete the decomposition, one further determines the Clebsch-

Gordan coefficients. They define the correct linear combination of bilinear products

(qﬁﬁ(”mqﬁch "™ which transform according to the irreps D**"*™". The Clebsch-Gordon
coefficients can be suitably assembled into a matrix C' that transforms the direct
product (7.10) into a fully reduced form:

"

(D™ g D*k’,m’)c = C[®E (xkm, xk'm/|xk""m") ® D" ]. (7.11)

Here the direct sum is over all stars xk”, and over all allowable irreps D**"™" which
may arise for a given xk”. The identity matrix E(l) is of dimension .

*Here s(s) give the number of arms of *k(xk’), 7m (', ) stand for the dimension of the little-group irreps
D™ (Dk/’m/). The products (s X r.,) and (s’ x 7’,,,/) equal the dimensions of the full-group irreps d** ™=

dim (D**™) and d*¥>™ = dim (D*¥"™").
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The theory of the decomposition of Kronecker products and the related reduction
coefficients has been developed during the second half of the last century. Details on
the different approaches and references to the numerous contributions to that field
can be found e.g. in Bradley and Cracknell (1972) or CDML. The work involved in
the construction of Kronecker products tables for space groups is rather tedious and
requires a considerable expertise in some aspects of the representation theory of space
groups. Probably this is the reason that the only systematic and relatively complete
compilations of Kronecker product tables for the space groups are given in the Volumes
2, 3 and 4 of the Kronecker Product Tables (Davies and Cracknell (1979), Cracknell
and Davies (1979) and Davies and Cracknell (1980)). The reductions of ordinary
Kronecker products of the irreps of the special wave vectors in the representation
domains of all 230 space groups are given in Volume 2 and 3 of the series. In Volume
4 the reductions of the symmetrized squares and cubes of the special wave vectors
are listed. The tables are computer produced and the method for their calculation is
based on the subgroup method. However, the Kronecker Product Tables have become
a bibliographic collector’s item. In addition, for certain applications the published
data are not sufficient and/or it is necessary to have the data in an electronic form.
The program DIRPRO carries out the reductions of ordinary Kronecker products of
space-group irreps for any wave vector (in or outside of the representation domain).
The program calculates the related wave-vector selection rules (see below) and the
reduction coefficients. The program DIRPRO is designed to compute also the Clebsch-
Gordon coefficients. For the moment this option is not included in the implemented
version of DIRPRO on the Bilbao Crystallographic server.

7.4.2 The method

For the decomposition of the Kronecker product of two space-group irreps and the
determination of the corresponding reduction coefficients we use a modification of the
full-group method (c¢f. Birman (1974) for details and a mathematical background of
the approach). The reduction procedure applied in DIRPRO is rather similar to the
one used for the solution of the subduction problem (Section 7.3). The reason is
obvious: in both cases it is necessary to decompose a reducible representation into
irreducible constituents. The essential differences concern the construction of the
reducible representation.

The determination of the reduction coefficients of an ordinary Kronecker product (7.10)
of space-group irreps is carried out in two steps.

Wave-vector selection rules

The first step in the reduction procedure is the determination of the wave-vector stars
«k” that occur in the splitting of the direct product *k®xk’. One defines *k-reduction
coefficients (xkxk’ | xk”) for the formal description of the splitting:

sk @ xk = " (xkik’ | xk") «k”, (7.12)

K’/
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The fact that the sy s’y arms of the direct product xk ® *k’ must be expressible in
terms of entire stars, results in the following relation for (xkxk’ | xk”):

sicshe = > (xkak! | 5K”) 8"\, (7.13)

K’/

The *k-reduction coefficients are integers and are determined by direct inspection.

Reduction coefficients

The number N of unknown reduction coefficients equals the sum over the numbers of
allowed irreps for each of the stars xk” that appear in the splitting of the Kronecker
product. The method of linear equations is used for the determination of the reduc-
tion coefficients. The first ¢ equations follow from the dimensionality conservation
conditions for each of the resultant wave-vector stars *k”;, i =1,...,¢:

Z(*km, sk'm’ | sK"m")d*" ™"

1

(7.14)

m

= Tkalk/m/(*k*k/ | *k")S"k//.

Here d*¥"™" is the dimension of D*k//’m//, and 7y, and 7'y, are the dimensions of
the little group irreps of the factors D**™ and D

The rest of the equations for the reduction coefficients is obtained from the defining
relation (7.10) rewritten for the characters of D**™® D**"™" and the resultant irreps:

"

(eSO (g) = % (ke xk'm [k m") "™ (g)
where X(*k,m)@(*k/,m’)(g) — X*k,m(g)x*k/,m/ (g)7 g€ g (715)

Trial and error methods are used for the selection of the necessary (N —¢) independent
linear equations for the calculation of the reduction coefficients. The search is carried
out among equations of the type (7.15) taken for different elements of G. A Gauss
elimination procedure is used for the solution of the system of linear equations for the
reduction coefficients.

7.4.3 The program DIRPRO

The Input data of DIRPRO includes the specification of the space group G by its
ITA number and the data for the wave vectors. The k-vector coefficients could be
referred to the primitive bases of reciprocal space (as found in CDML), to the centered
dual basis (conventional k-vector coefficients). As an option the program displays the
full-group representations (not just the representations of the little groups) for the
generators of the space group. There is also an option to consider the symmetrized
Kronecker squares if xk = xk’.
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The structure of the Output of DIRPRO follows that of CORREL. The first block lists
the information about the space group G including its space-group number and lattice
type, generators and translational coset representatives (W, w) given in (3x4) matrix
form. The k-vectors are specified by their input coefficients and those referred to the
dual basis of the default setting of G. The arms of the wave-vector stars xk and *k’
are also shown. The wave-vector selection rules are displayed in the block with the
heading 'INFORMATION FOR THE SPLITTING’. Each of the resulting xk” stars
is specified by its k-vector coefficients referred to the dual basis of G. Next follows
the block containing information on the representations of the space group G for xk,
xk’ and all *k” stars that appear in the splitting of the direct product. The data
consists of the corresponding little groups, the allowed little-group irreps, the chosen
coset representatives of the decomposition of the group with respect to the little group
and the full space-group irreps given for the generators (optional). The last block
of the Output, named 'REDUCTION PROBLEM’, shows the decompositions of all
possible direct products D**™ @ D™ (for each allowed m and m') into direct sums
of irreducible constituents.

7.5 Illustrative examples

The databases and computer packages on space- and point-group representations, form
the set of basic modules which is used further in different programs on the Bilbao
Crystallographic Server for applications of representation theory to specific problems
of solid-state physics and chemistry. For example, symmetry-mode analysis of atomic
displacements of crystalline solids could be very helpful for the proper interpretation of
infrared and Raman experimental results. The program SAM computes the symmetry-
adapted modes at the I' point and studies their infrared and Raman activity. The
program NEUTRON (Kirov et al., 2003) computes the phonon selection rules applicable
in inelastic neutron-scattering experiments. The software packages SYMMODES (Capillas
et al., 2003) and AMPLIMODES (Orobengoa et al., 2009) performs a group-theoretical
and symmetry-mode analysis of structural phase transitions. In the following, we
illustrate the usefulness of the group-subgroup computer tools available on the Bilbao
Crystallographic Server (the program SUBGROUPGRAPH, for more details see e.g. Aroyo
et al. (2006a)) and the correlation relations obtained by CORREL in treating phase-
transition problems.

Consider a continuous or quasi-continuous phase transition between two crystalline
phases whose symmetry groups are group-subgroup related G > H. The order param-
eter which drives the transition (i.e. it is related to the symmetry-breaking distortion
with respect to the high symmetry phase) is known as the primary order parameter
and it is associated with an irrep D**™ of G, the so-called active irrep. The direction
of the order parameter below the transition determines the space-group symmetry H
which is also known as the isotropy subgroup of the order parameter. A subgroup H
is an isotropy subgroup of D**™ of G if and only if: (i) the subduction multiplicity of
the identity irrep of # in D**™ | H is non-zero, and (ii) there exists no supergroup
Z of H in the group-subgroup graph of maximal subgroups of G > H with the same
subduction multiplicity of the identity irrep of Z in D**™ | Z. These conditions are
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known as subduction and chain-subduction criteria (see e.g. Birman, 1978). In the
analysis of the symmetry break G — H one should consider all possible distortions
compatible with the symmetry . Some distortions are related to order parameters as-
sociated with irreps different from that of the primary order parameter and are known
as secondary order parameters. Their isotropy subgroups are in general supergroups
of the space group of the low-symmetry phase in the group-subgroup graph G > H.
The symmetry analysis of the primary and secondary order parameters of a transfor-
mation between a high- and a low-symmetry phase of given space-group symmetries,
is known as the inverse Landau problem (Ascher and Kobayashi, 1977). The following
two ’classical” examples demonstrate how the results of the programs SUBGROUPGRAPH
and CORREL, can be applied for the solution of the inverse Landau problem.

Example 1 The crystal structure of BaTiOg3 is of perovskite type. Above 120 °C,
BaTiO3 has the ideal paraelectric cubic phase (Pm3m, No.221). As temperature is
lowered, BaTiO3 assumes tetragonal, then orthorhombic and finally trigonal structures
with slightly deformed unit cells. The three structures are ferroelectric with different
directions of the spontaneous polarization axes. The possible transformation matrices
for the symmetry break Pm3m > P4mm (No0.99) of index 6 are listed by the program
SUBGROUPGRAPH. The three different P4mm subgroups of Pm3m corresponding to the
three domain orientations of the tetragonal phase are conjugated in Pm3m. Here,
we consider the case of the identity transformation matrix between the conventional
bases of Pm3m and P4mm. The low-symmetry space group P4mm is a translatio-
nengleiche subgroup (or t-subgroup for short) of Pm3m but it is not a maximal sub-
group: the chain of maximal subgroups is of the form: Pm3m > P4/mmm > P4dmm.
The correlation relations calculated by CORREL for Pmdm > P4mm with k-vector
I'=(0,0,0) indicate the candidates for the irreps of Pm3m associated to the possible
primary and secondary order parameters. The subduction multiplicity of the identity
irrep of P4mm is equal to 1 for three different irreps of Pm3m: (¥*GM)(1) (which
is the identity irrep), (*GM)(6) and (*GM)(9) (here we use the irrep notation of
CORREL). The application of the chain-subduction criteria distinguishes between pri-
mary and secondary order parameters. The obvious isotropy group of (*GM)(1) is
the high-symmetry group itself and the irrep (*GM)(1) is related to the possible vol-
ume change that would occur during the transformation. The run of CORREL for the
pair Pm3m > P4/mmm shows that the group P4/mmm is the isotropy sugroup for
(*GM)(6), and the associated secondary order parameter corresponds to the onset
of tetragonal strain during the transformation. Finally, the physical distortion char-
acterized by (*GM)(9) can be related to the onset of non-zero polarization and be
associated to the primary-order parameter. The columns of the subduction matrices
of the irreps (*GM)(1), (*GM)(6) and (*GM)(9) corresponding to the identity irrep
of the isotropy groups indicate the directions of the order parameters in the irrep car-
rier spaces. One should note that the specific form of the order-parameter direction
depends on the choice of the irrep matrices.

The application of the subduction and chain-subduction conditions for the symmetry
break Pm3m > R3m, index 8, shows that the primary distortions related to the onset
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Pm3m
R3m P43m
R3m Figure 7.4: Graph of maximal subgroups for the
group-subgroup pair Pm3m > R3m, index 8.

of polarization along one of the main-diagonal directions of the cube is associated also
to (*GM)(9) but with order parameter direction (a,a,a). There are three more irreps of
Pm3m whose subduction multiplicities of the identity irrep of R3m are different from
zero: (¥*GM)(1), (*GM)(4) and (*GM)(8). Their isotropy groups Pm3m, P43m
and R3m are determined from the results of CORREL for the pairs Pm3m > P43m and
Pm3m > R3m. The graph Pm3m > R3m derived by the program SUBGROUPGRAPH
(Fig.7.5), shows that the isotropy subgroups P43m and R3m are intermediate super-
groups of R3m which indicates that the corresponding order parameters are secondary
ones.

Example 2 As a second example we consider another well-studied, both experi-
mentally and theoretically, phase transition, namely that of Sr'TiO3. In that case
the transformation is associated with the k-vector point R:(%, %, %) which is at the
border of the Brillouin zone. The high-symmetry space group is Pm3m and the low-
symmetry phase is tetragonal, of space-group symmetry I4/mem (No. 140) with a
doubling of the unit cell, i.e. I4/mem is a general-type subgroup of Pm3m of index
6. The analysis of the group-subgroup relations by SUBGROUPGRAPH shows that there
are 4 different classes of conjugate 14/mem subgroups. Each class consists of three
different subgroups, related to the three possible doublings of the unit cell of the sub-
group. The different classes are distinguished by the different origin choices of the
subgroup with respect to the group. For the specific transformation we are consider-
ing, I4/mcm has the lattice vectors (a-b, a+b, 2¢) with an origin shift (3, 3, 3) with
respect to the Pm3m basis. SUBGROUPGRAPH lists the following chain of maximal sub-
groups: Pm3m > P4/mmm > I4/mcm. The correlation relations derived by CORREL
for the *R-irreps shows that only the 3-dimensional irrep (¥R)(7) of Pm3m subduces
the identity irrep of 74/mem, with an order parameter direction (a,0,0). Obviously,
this is the irrep associated with the primary order parameter, as the only intermediate
supergroup P4/mmm of I4/mem is a t-subgroup of Pm3m. The possible secondary
order parameters with P4/mmm as isotropy subgroup, could be associated only with
Brillouin-zone centre irreps of Pm3m. The results of CORREL for I'=(0,0,0) for the
pairs Pm3m > I4/mcm and Pm3m > P4/mmm (tetragonal lattice vectors (a-b,
a+b, c¢), with no origin shift) show that the possible secondary order parameters are
associated with (*GM)(1) (volume change) and (*GM)(6) (tetragonal distortion).
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