

Symmetry Relationships between Crystal Structures with Applications to Structural and Magnetic Phase Transitions

Varanasi, India, 27-31 October 2014

REPRESENTATIONS OF CRYSTALLOGRAPHIC GROUPS II.

SPACE GROUPS

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

Irreducible Representations of Space Groups

Method: Construct the irreps of the space group G starting from the irreps of one of its normal subgroups $H \triangleleft G$

- I. Construct all irreps of H
- 2. Distribute the irreps of H into orbits under G and select a representative
- 3. Determine the little group for each representative
- 4. Find the small (allowed) irreps of the little group
- 5. Construct the irreps of G by induction from the the small (allowed) irreps of the little group

SPACE GROUPS

Crystal pattern: infinite, idealized crystal structure (without disorder, dislocations, impurities, etc.)

Space group G: The set of all symmetry operations (isometries) of a crystal pattern

Translation subgroup $T_G \triangleleft G$: The infinite set of all translations that are symmetry operations of the crystal pattern

Point group of the space groups P_G: The factor group of the space group G with respect to the translation subgroup $T: P_G \cong G/H$

Born-von Karman boundary condition

$$(\mathbf{I}, \mathbf{t}_i)^{N_i} = (\mathbf{I}, \mathbf{N}_i) = (\mathbf{I}, \mathbf{o})$$

$$(I, Nt); Nt = (N_1t_1, N_2t_2, N_3t_3)$$

infinite T_G:

 $\{(I,0), (I,t), (I,2t),...,(I,Nt), (I,(N+I)t), ...,(I,2Nt), ...\}$

finite T_G : {(1,0), (1,t}, (1,2t),...,(1,(N-1)t)}

Representations of finite Abelian groups

Finite Abelian groups { cyclic groups direct product of cyclic groups

A
$$\{a, a^2, ..., a^s\}$$
 $\{b, b^2, ..., b^r\}$ $\{(a^m, b^n)\} = 1, ..., s;$ $\{(a^m, b^n)\}$

DP,q(am, bn) =
$$exp(-i2\pi m)\frac{p}{s} exp(-i2\pi n)\frac{q}{r}$$

p=0,1,...,s-1 q=0,1,...,r-1

IRREPS of Translational group

Translational subgroup: T

$$T = T_{1} \otimes T_{2} \otimes T_{3} = \{(t_{1}^{k}, t_{2}^{l}, t_{3}^{m})\}$$

$$D^{p,q,r}(t_{1}^{k}, t_{2}^{l}, t_{3}^{m}) =$$

$$exp(-i2\pi k) \frac{p}{N_{1}} exp(-i2\pi l) \frac{q}{N_{2}} exp(-i2\pi m) \frac{r}{N_{3}}$$

number of irreps:

$$p=0,1,...,N_1-1$$
 $q=0,1,...,N_2-1$ $r=0,1,...,N_3-1$

dim
$$D^{p,q,r}(t_1^k, t_2^l, t_3^m) = I$$

IRREPS of Translational group

reciprocal space

L:
$$a_{1}, a_{2}, a_{3} \longleftrightarrow L^{*}: a^{*}_{1}, a^{*}_{2}, a^{*}_{3}$$

$$a_{i}.a^{*}_{j} = 2\pi \delta_{ij}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = e^{-2\pi i (q_{1} \frac{t_{1}}{N_{1}} + q_{2} \frac{t_{2}}{N_{2}} + q_{3} \frac{t_{3}}{N_{3}})}$$

$$k_{i} = q_{i}/N_{i}$$

$$\Gamma^{(q_{1} q_{2} q_{3})}[(\mathbf{I}, \mathbf{t})] = \Gamma^{k}[(\mathbf{I}, \mathbf{t})] = \exp^{-i(\mathbf{k} \mathbf{t})}$$

ITA conventions:

$$(\mathbf{k} \ \mathbf{t}) = \ (k_1, k_2, k_3) \begin{vmatrix} \mathbf{a}^* | \ \mathbf{a}^$$

IRREPS of Translational group

unit cell of reciprocal space (fundamental region)

$$k'=k+K$$
, $K=h_1a_1*+h_2a_2*+h_3a_3*$, $K \in L^*$

$$\Gamma^{k'}=\exp(-i(k+K)t)=\exp(-i(k.t))=\Gamma^{k}$$

first Brillouin zone (Wigner-Seitz cell)

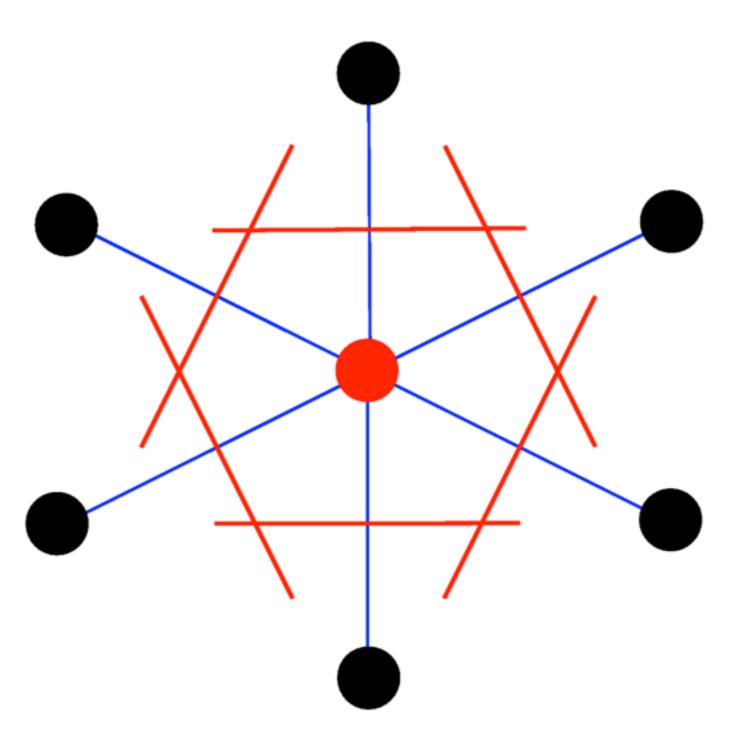
$$|\mathbf{k}| \leq |\mathbf{K} - \mathbf{k}|, \ \forall \mathbf{K} \in \mathbf{L}^*$$

crystallographic unit cell

$$0 \le |\mathbf{k}| \le 1$$

first Brillouin zone (Wigner-Seitz cell)

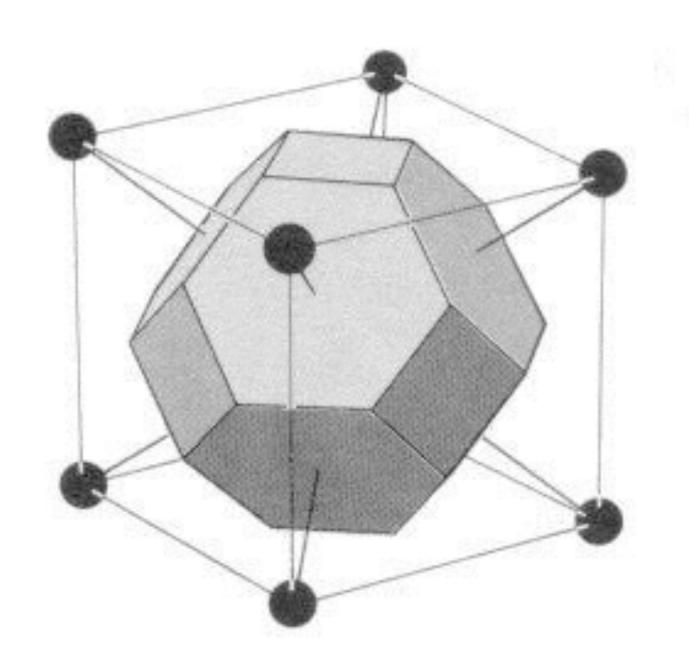
 $|k| \le |K-k|, \forall K \in L^*$



first Brillouin zone (Wigner-Seitz cell)

 $|\mathbf{k}| \leq |\mathbf{K} - \mathbf{k}|, \forall \mathbf{K} \in \mathbf{L}^*$

Wigner-Seitz construction for bcc lattice



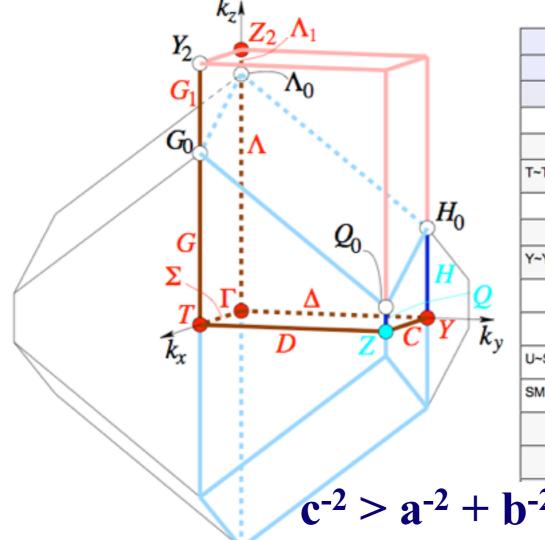
Brillouin Zone Database Crystallographic Approach

Reciprocal space groups

Brillouin zones
Representation domain
Wave-vector symmetry

Symmorphic space groups IT unit cells Asymmetric unit Wyckoff positions

The k-vector Types of Group 22 [F222]



	ion	Wy	ckoff	Position	ITA description	
CI	DML*	- Conventional-ITA		ITA		Coordinates
Label	Primitive	Conventional-ITA		117	^	Coordinates
GM	0,0,0	0,0,0	а	2	222	0,0,0
Т	1,1/2,1/2	0,1,1	b	2	222	0,1/2,1/2
T~T ₂			b	2	222	1/2,0,0
z	1/2,1/2,0	0,0,1	С	2	222	0,0,1/2
Y	1/2,0,1/2	0,1,0	d	d 2 222		0,1/2,0
Y~Y ₂			d	2	222	1/2,0,1/2
SM	0,u,u ex	2u,0,0	е	4	2	x,0,0 : 0 < x <= sm ₀
U	U 1,1/2+u,1/2+u ex 2u,1,1		е	4	2	x,1/2,1/2:0 < x < u ₀
U~SM ₁ =[SM ₀ T ₂]			е	4	2	x,0,0 : 1/2-u ₀ =sm ₀ < x < 1/2
SM+SM ₁ =[GM T ₂]				4	2	x,0,0 : 0 < x < 1/2
A 1/2,1/2+u,u ex 2u,0,1		f	4	2	x,0,1/2 : 0 < x <= a ₀	
С	1/2,u,1/2+u ex	2u,1,0	f	f 4 2		x,1/2,0:0 < x < c ₀
$\begin{array}{c} & \text{Y} \\ & \text{Y} \sim \text{Y}_2 \\ & \text{SM} \\ & \text{U} \\ & \text{U} \sim \text{SM}_1 = [\text{SM}_0 \text{ T}_2] \\ & \text{SM} + \text{SM}_1 = [\text{GM T}_2] \\ & \text{A} \end{array}$	1/2,0,1/2 0,u,u ex 1,1/2+u,1/2+u ex 1/2,1/2+u,u ex	2u,0,0 2u,1,1	d d e e e f	2 2 4 4 4 4	222 222 2 2 2 2	$0,1/2,0$ $1/2,0,1/2$ $x,0,0:0 < x <= sn$ $x,1/2,1/2:0 < x <$ $x,0,0:1/2-u_0=sm_0 < x$ $x,0,0:0 < x < 1/2$ $x,0,1/2:0 < x <= sn$

Step 2.

Classification of the irreps of the Translation subgroup.

orbits of irreps of T

$$\begin{split} \Gamma^{k'}(I,t) &= \Gamma^k \, ((W,w)^{-1}(I,t)(W,w)), \, (I,t) \in T, \quad (W,w) \in G \\ \Gamma^{k'}(I,t) &= \Gamma^k \, (I,W^{-1}t) = \exp -i(k \, .(W^{-1}t)) \, = \exp -i((k \, W^{-1}).t) \\ k' &= k \, W \, + \, K \end{split}$$

little co-group of k: G^k

$$k = kW + K, K \in L^*$$

special and general

$$\overline{G}^k = \{I\} \overline{G}^k > \{I\}$$

Orbits of irreps of the Translation subgroup.

star of k: k*
$$\overline{G}^k < \overline{G}$$
$$\overline{G}^k + W_2 \overline{G}^k + ... + W_m \overline{G}^k$$

$$k^* = \{k' = kW_m + K, W_m \notin \overline{G}\}$$

representation domain

exactly one k-vector from each star

Little group and Little-group irreps (Allowed irreps of the little group)

Step 3.

Little group G^k

$$G^k = \{(W,w) \in G | W \in \overline{G}^k \}$$

Step 4.

Allowed irreps of Gk

$$(D^{k,i}\downarrow T) = \exp(-ikt)I$$

special case:

general k-vector

star of k little group of k allowed irreps

Little-group irreps (Allowed irreps of the little group)

Step 4.

Allowed irreps of G^k

- k is a vector of the interior of the BZ
 OR
- 2. $\mathcal{G}^{\mathbf{k}}$ is a symmorphic space group.

Case I.

allowed irreps $\mathbf{D}^{\mathbf{k},i}$: $\mathbf{D}^{\mathbf{k},i}(\mathbf{W},\mathbf{w}) = \exp{-(i\mathbf{k}\mathbf{w})} \overline{\mathbf{D}}^{\mathbf{k},i}(\mathbf{W})$ Here $\mathbf{D}^{\mathbf{k},i}$ is an irrep of $\mathcal{G}^{\mathbf{k}}$,

Little-group irreps (Allowed irreps of the little group)

CASE 2:

- k is a vector on the surface of the BZ AND
- 2. $\mathcal{G}^{\mathbf{k}}$ is a nonsymmorphic space group.

allowed irreps $D^{k,i}$:

induced from allowed irreps $\mathbf{D}^{\mathbf{k},\,i}_{\mathcal{H}^{\mathbf{k}}_0}$ of \mathcal{H}_0 where

 \mathcal{H}_0 is a symmorphic subgroup of $\mathcal{G}^{\mathbf{k}}$

$$\mathcal{G} \triangleright \mathcal{H}_1 \triangleright \mathcal{H}_2 \dots \triangleright \mathcal{H}_0 \triangleright \dots \triangleright \mathcal{T}$$

Induction procedure

Construction of the irreps of the space group G by induction from the the small (allowed) irreps of the little group $G^k < G$

PROCEDURE FOR THE CONSTRUCTION OF SPACE-GROUP REPRESENTATIONS

Procedure for the construction of the irreps of space groups.

I. space-group information

- (a) Decomposition of the space group G in cosets relative to its translation subgroup T, see IT A (1996)
 G = T∪(W₂, w₂)T∪ ... ∪(W_p, w_p)T
- (b) Choice of a convenient set of generators of G, see IT A (1996)

2. k-vector information

- (a) k vector from the representation domain of the BZ
- (b) Little co-group $\overline{\mathcal{G}}^{\mathbf{k}}$ of \mathbf{k} :

$$\overline{\mathcal{G}}^{\mathbf{k}} = \{\widetilde{\mathbf{W}}_i \in \overline{\mathcal{G}}: \ \mathbf{k} = \mathbf{k}\,\widetilde{\mathbf{W}}_i + \mathbf{K}, \ \mathbf{k} \in \mathbf{L}^* \}$$

- (c) k-vector star ⋆(k)
 - $\star(\mathbf{k}) = {\mathbf{k}, \mathbf{k}_2, \ldots, \mathbf{k}_s}$, with $\mathbf{k} = \mathbf{k} \overline{\mathbf{W}}_j$, $j = 1, \ldots s$, where \overline{W}_j are the coset representatives of $\overline{\mathcal{G}}$ relative to $\overline{\mathcal{G}}^{\mathbf{k}}$.
- (d) Determination of the little group $\mathcal{G}^{\mathbf{k}}$

$$\mathcal{G}^{\mathbf{k}} = \{ (\widetilde{\mathbf{W}}_i, \, \widetilde{\mathbf{w}}_i) \in \mathcal{G} : \widetilde{\mathbf{W}}_i \in \overline{\mathcal{G}} \}$$

3. Allowed (small) irreps of $\mathcal{G}^{\mathbf{k}}$

(a) If \$\mathcal{G}^{\mathbf{k}}\$ is a symmorphic space group or \$\mathbf{k}\$ is inside the BZ, then the non-equivalent allowed irreps \$\mathbf{D}^{\mathbf{k}}, i\$ of \$\mathcal{G}^{\mathbf{k}}\$ are related to the non-equivalent irreps \$\mathbf{D}^{\mathbf{k}}, i\$ of \$\mathcal{G}^{\mathbf{k}}\$ in the following way:

$$\mathbf{D}^{\mathbf{k},\,i}(\widetilde{\mathbf{W}}_i,\,\widetilde{\mathbf{w}}_i) = \exp{-(i\,\mathbf{k}\,\mathbf{w}_i)}\,\overline{\mathbf{D}}^{\mathbf{k},\,i}(\widetilde{\mathbf{W}}_i)$$

- (b) If $\mathcal{G}^{\mathbf{k}}$ is a non-symmorphic space group and \mathbf{k} is on the surface of the BZ, then:
 - i. Look for a symmorphic subgroup $\mathcal{H}_0^{\mathbf{k}}$ (or an appropriate chain of normal subgroups) of index 2 or 3
 - ii. Find the allowed irreps $\mathbf{D}_{\mathcal{H}_0}^{\mathbf{k}\,i}$ of $\mathcal{H}_0^{\mathbf{k}}$, $i.\,e.$ those for which is fulfilled $\mathbf{D}_{\mathcal{H}_0}^{\mathbf{k},\,i}(\mathbf{I},\,\mathbf{t}) = \exp{-(i\,\mathbf{k},\,\mathbf{t})\,\mathbf{I}}$ and distribute them into orbits relative to $\mathcal{G}^{\mathbf{k}}$
 - iii. Determine the allowed irrpes of $\mathcal{G}^{\mathbf{k}}$ using the results for the induction from the irreps of normal subgroups of index 2 or 3

Induction procedure

4. Induction procedure for the construction of the irreps $\mathbf{D}^{\mathbf{k},i}$ of $\mathcal G$ from the allowed irreps $\mathbf{D}^{\mathbf{k},i}$ of $\mathcal G$

The representation matrices of $\mathbf{D}^{*\mathbf{k},i}(\mathcal{G})$ for any element of \mathcal{G} can be obtained if the matrices for the generators $\{(\mathbf{W}_l, \mathbf{w}_l), l = 1, \ldots, k\}$ of \mathcal{G} are available (step 1a).

$$D^{Ind}(g) = M(g) \otimes D^{(j)}(h)$$
induction matrix

subgroup irrep matrix

Induction procedure

Decomposition of \mathcal{G} relative to $\mathcal{G}^{\mathbf{k}}$ An obvious choice of coset representatives of \mathcal{G} relative to $\mathcal{G}^{\mathbf{k}}$ is the set of of elements $\{q_i = (\overline{W}_i, \overline{w}_i), i = 1, \ldots, s\}$ where \overline{W}_i are the coset representatives of $\overline{\mathcal{G}}$ relative to $\overline{\mathcal{G}}^{\mathbf{k}}$

$$\mathcal{G} = \mathcal{G}^{\mathbf{k}} \cup (\overline{W}_2, \overline{w}_2) \mathcal{G}^{\mathbf{k}} \cup \dots (\overline{W}_s, \overline{w}_s) \mathcal{G}^{\mathbf{k}}$$

a) Construction of the induction matrix

The elements of the little group g^k and the coset representatives $\{q_1,q_2,...,q_s\}$ of G relative to g^k are necessary for the construction of the induction matrix

$$M(W,w)_{ij} = \begin{cases} I & \text{if } q_i^{-1}(W,w)q_j \in \mathcal{G}^k \\ 0 & \text{if } q_i^{-1}(W,w)q_j \not\in \mathcal{G}^k \end{cases}$$

0		0	0
0	0		0
	0	0	0
0	0	0	

 $dim M=s \times s$

monomial matrix

(b) Matrices of the irreps $\mathbf{D}^{\star \mathbf{k}, m}$ of \mathcal{G} :

$$\mathbf{D}^{\star\mathbf{k},m}(\boldsymbol{W}_{l}, \boldsymbol{w}_{l})_{i\mu,j\nu} = M(\boldsymbol{W}_{l}, \boldsymbol{w}_{l})_{ij} \mathbf{D}^{\mathbf{k},m}(\widetilde{\boldsymbol{W}}_{p}, \widetilde{\boldsymbol{w}}_{p})_{\mu\nu},$$
where $(\widetilde{\boldsymbol{W}}_{p}, \widetilde{\boldsymbol{w}}_{p}) = q_{i}^{-1} (\boldsymbol{W}_{l}, \boldsymbol{w}_{l}) q_{j}$

0		0	0
0	0		0
	0	0	0
0	0	0	

All irreps of the space group \mathcal{G} for a given \mathbf{k} vector are obtained considering all allowed irreps of the little group $\mathcal{G}^{\mathbf{k}}$ $\mathbf{D}^{\mathbf{k},m}$ obtained in step 3.

EXERCISES

Problem I.

Consider the k-vectors $\Gamma(000)$ and $\mathbf{X}(0\frac{1}{2}0)$ of the group **P4mm**

- (i) Determine the little groups, the **k**-vector stars, the number and the dimensions of the little-group irreps, the number and the dimensions of the corresponding irreps of the group *P4mm*
- (ii) Calculate a set of coset representatives of the decomposition of the group *P4mm* with respect to the little group of the **k**-vectors Γ(000) and **X**, and construct the corresponding full space group irreps of *P4mm*

P4mm

 C_{4v}^1

4mm

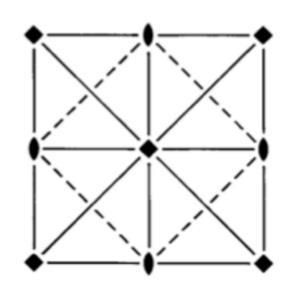
Tetragonal

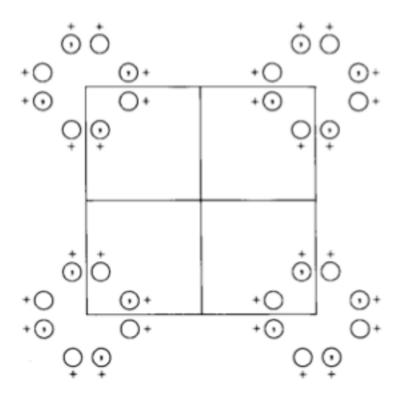
No. 99

P4mm

Patterson symmetry P4/mmm

ITA spacegroup data (selection)





Origin on 4mm

Asymmetric unit $0 \le x \le \frac{1}{2}$; $0 \le y \le \frac{1}{2}$; $0 \le z \le 1$; $x \le y$

Symmetry operations

(1) 1

- (2) 2 0,0,z
- (3) 4⁺ 0,0,z
- $(4) 4^{-} 0, 0, z$

- (5) m x, 0, z
- (6) m = 0, y, z
- (7) $m x, \bar{x}, z$
- (8) m x, x, z

General position

- (1) x, y, z (2) \bar{x}, \bar{y}, z (3) \bar{y}, x, z (4) y, \bar{x}, z

- (5) x, \bar{y}, z (6) \bar{x}, y, z (7) \bar{y}, \bar{x}, z
- (8) y, x, z

5.5 Crystal class 4mm

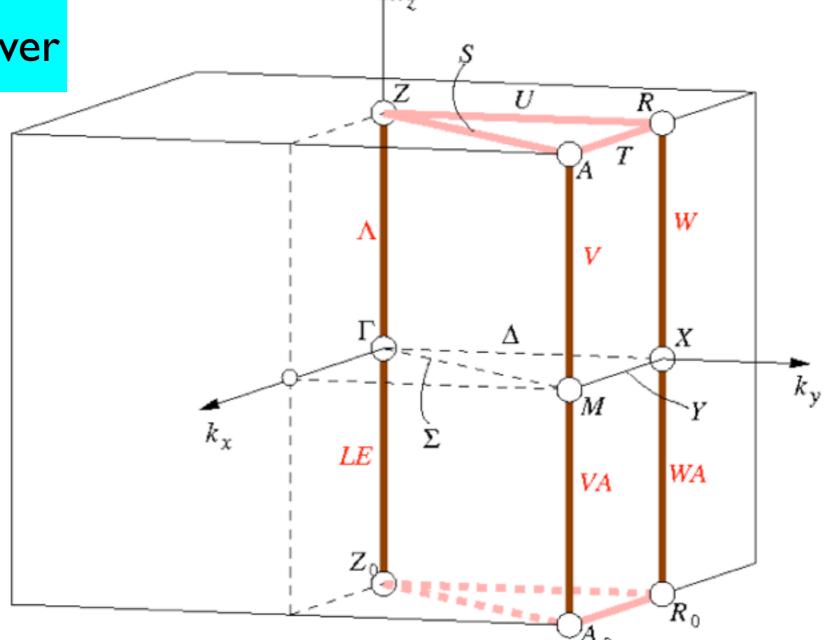
5.5.1 Arithmetic crystal class 4mmP

Fig. 5.5.1.1 Diagram for arithmetic crystal class 4mmP

 $P4mm - C_{4v}^1$ (99) to $P4_2bc - C_{4v}^8$ (106)

Reciprocal-space group $(P4mm)^*$, No. 99 see Tab. 5.5.1.1

Brillouin Zone
Database
BilbaoCrystServer



Irreps of P4mm, $\Gamma(000)$ and X(01/20)

- 1. Space-group information
 - (a) Decomposition of P4mm relative to its translation subgroup;

coset representatives from IT A (1996):

$$(1, o), (2z, o), (4, o), (4^{-1}, o), (m_{yz}, o), (m_{xz}, o), (m_{x\overline{x}}, o), (m_{xx}, o)$$

(b) generators of P4mm from IT A (1996) $\mathbf{t}_1, \mathbf{t}_2, \mathbf{t}_3, (\mathbf{2}_z, \mathbf{o}), (\mathbf{4}, \mathbf{o}), (\mathbf{m}_{yz}, \mathbf{o})$

2. \vec{k} -vector information

- (a) X (0, 1/2, 0)
- (b) little co-group $\overline{\mathcal{G}}^X=\{\mathbf{1,\ 2}_z,\ \mathbf{m}_{yz},\ \mathbf{m}_{xz}\}=2_zm_{yz}m_{xz}$

e.g.,
$$X 2_z = (0, 1/2, 0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & \overline{1} & 0 \\ 0 & 0 & 1 \end{pmatrix} = (0, -1/2, 0) = (0, 1/2, 0) + (0, \overline{1}, 0)$$

And the little co-group of $\Gamma(000)$?

- (c) \vec{k} -vector star: $\star X = \{(0, 1/2, 0), (1/2, 0, 0)\}$ coset representative of $\overline{G} = 4mm$ relative to $\overline{G}^{\mathbf{k}} = 2_z m_{yz} m_{xz}$, HM symbol mm2 $4mm = 2_z m_{yz} m_{xz} \cup \mathbf{m}_{xx} 2_z m_{yz} m_{xz}$
- (d) little group $\mathcal{G}^X = P2_z m_{yz} m_{xz}$, HM symbol Pmm2
- (e) decomposition of P4mm relative to $P2_z m_{yz} m_{xz}$ $P4mm = P2_z m_{yz} m_{xz} \cup (\mathbf{m}_{xx}, \mathbf{o}) P2_z m_{yz} m_{xz}$

And for the point $\Gamma(000)$?

3. Allowed irreps of \mathcal{G}^X

Because \mathcal{G}^X is a symmorphic group,

$$\mathbf{D}^{X,i}(\widetilde{W}_i,\,\widetilde{w}_i) = \exp-(i\,\mathbf{X}\,\widetilde{\mathbf{w}}_i)\,\overline{\mathbf{D}}^{X,i}(\widetilde{W}_i)$$

$P2_zmm$	(1, o)	(2, o)	$(m{m}_{yz},~m{o})$	$(\boldsymbol{m}_{xz},\; \boldsymbol{o})$	(1, t)
$oldsymbol{D}^{X,1}$	1	1	1	1	$\exp{-(i{f X}{f t})}$
$oldsymbol{D}^{X,2}$	1	1	-1	-1	$=\exp-(i\pi n_2)$
$oldsymbol{D}^{X,3}$	1	-1	1	-1	$=(-1)^{n_2}$
$oldsymbol{D}^{X,4}$	1	-1	-1	1	

t is the column of integer coefficients (n_1, n_2, n_3)

And for the point $\Gamma(000)$?

4. Induction procedure

Generators of P4mm: $\langle (\boldsymbol{W}_l, \boldsymbol{w}_l) \rangle = \langle (\boldsymbol{1}, \boldsymbol{t}_i), (\boldsymbol{4}, \boldsymbol{o}), (\boldsymbol{m}_{yz}, \boldsymbol{o}) \rangle$

Representatives of $P2_z m_{yz} m_{xz}$ relative to \mathcal{T} :

$$\{(\widetilde{W}_j, \, \widetilde{w}_j)\} = \{(\mathbf{1}, \mathbf{o}), \, (\mathbf{2}_z, \, \mathbf{o}), (\mathbf{m}_{yz}, \, \mathbf{o}), \, (\mathbf{m}_{xz}, \, \mathbf{o})\}$$

Coset representatives of P4mm relative to $P2zm_{yz}m_{xz}$:

$$\{q_1, q_2\} = \{(\mathbf{1}, \mathbf{o}), (\mathbf{m}_{xx}, \mathbf{o})\}.$$

	Induction matrix			$q_i^{-1}\left(oldsymbol{W}_{l},oldsymbol{w}_{l} ight)q_j$		
$(\boldsymbol{W}_l, \boldsymbol{w}_l)$	q_i	q_i^{-1}	$q_i^{-1}\left(oldsymbol{W}_{l}, oldsymbol{w}_{l} ight)$	q_{j}	$=(\widetilde{W}_j,\widetilde{w}_j)$	$M_{ij} \neq 0$
(1, t)	(1, o)	(1, o)	(1, t)	(1, o)	(1, t)	11
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(m{1},m{t})$ $(m{m}_{xx},m{m}_{xx}m{t})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(1, \mathbf{m}_{xx} \mathbf{t})$	22
$(oldsymbol{m}_{yz},oldsymbol{o})$	(1, o)	(1, o)	$(m{m}_{yz},~m{o})$	(1, o)	$(m{m}_{yz},~m{o})$	11
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(m{m}_{yz}, \; m{o})$ $(m{4}^{-1}, \; m{o})$	$(\boldsymbol{m}_{xx},\boldsymbol{o})$	$(oldsymbol{m}_{xz},\ oldsymbol{o})$	22
(4, o)	(1, o)	(1, o)	(4, o)	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(m{m}_{yz},~m{o})$	12
	$(\boldsymbol{m}_{xx}, \boldsymbol{o})$	$(\boldsymbol{m}_{xx},\ \boldsymbol{o})$	$(4, \mathbf{o})$ $(\mathbf{m}_{xz}, \mathbf{o})$	(1, o)	$(oldsymbol{m}_{xz},\ oldsymbol{o})$	21

(b) Matrices of the irreps $\mathbf{D}^{*X,i}$ of \mathcal{G}

$$egin{array}{lcl} {f D}^{*X,i}(1,t) & = & \left(egin{array}{c|ccc} {f D}^{X,i}(1,t) & O & \\ \hline O & {f D}^{X,i}(1,m_{xx}t) \end{array}
ight); \ {f D}^{*X,i}(m_{yz},o) & = & \left(egin{array}{c|ccc} {f D}^{X,i}(m_{yz},o) & O & \\ \hline O & {f D}^{X,i}(m_{xz},o) \end{array}
ight) \ {f D}^{*X,i}(4,o) & = & \left(egin{array}{c|ccc} O & {f D}^{X,i}(m_{yz},o) & \\ \hline {f D}^{X,i}(m_{xz},o) & O & \end{array}
ight) \end{array}$$

	$(oldsymbol{m}_{yz}, oldsymbol{o})$	(4 , o)	(1	, t)
$\mathbf{D}^{*X,1}$	$\left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array} ight)$	$\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array} ight)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,2}$	$\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,3}$	$\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$	$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$
$\mathbf{D}^{*X,4}$	$ \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) $ $ \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) $	$\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array} ight)$	$\begin{pmatrix} (-1)^{n_2} \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ (-1)^{n_1} \end{pmatrix}$

Consider a general **k**-vector of a space group G. Determine its little co-group, the **k**-vector star. How many arms has its star? How many full-group irreps will be induced and of what dimension? Write down the matrix of the full-group irrep of a general **k**-vector of a translation.

```
general k-vector k irrep of T: \Gamma^k little co-group \overline{G}^k = \{1\} little group G^k = T star of k, k^* = \{kW_i, W_i \in \overline{G}\} allowed irrep: \Gamma^k induction procedure
```

(W,w)	Ψj	(W,w)q _j	qi	qi ^{- l} (W,w)qj	M _{ij}
(l,t)	(W_j, w_j)				

$$k^* = \{k, k', k'', ..., k^n\}$$

	exp-ikt					
		exp-ik't				
$D^{k*}(I,t)=$			exp-ik"t		U	
				•••		
					•••	
						exp-ik ⁿ t