

Symmetry Relationships between Crystal Structures with Applications to Structural and Magnetic Phase Transitions

Varanasi, India, 27-31 October 2014

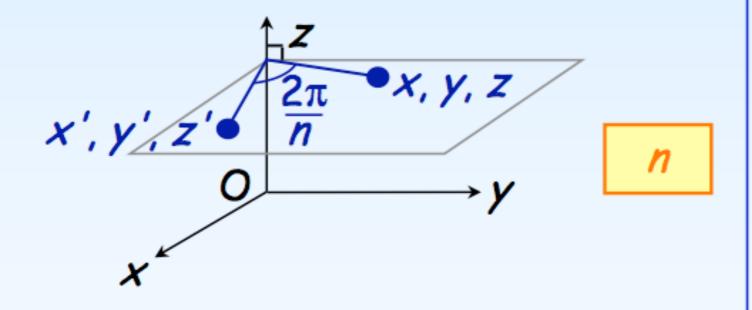
CRYSTALLOGRAPHIC POINT GROUPS II (further developments)

Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

CRYSTALLOGRAPHIC POINT GROUPS (brief overview)

Symmetry operations in 3D Rotations

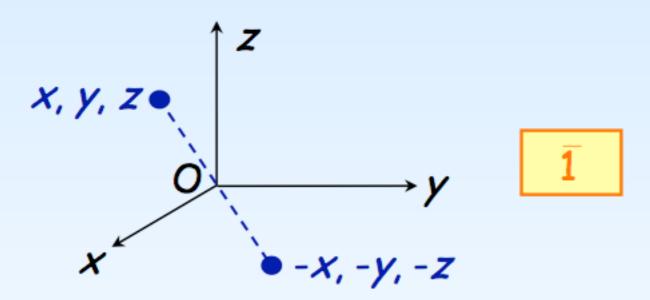
Rotation of order
$$n = rotation$$
 by $\varphi = \frac{2\pi}{n}$



$$\alpha(n) = \begin{pmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{Det = +1}$$

Symmetry operations in 3D Rotoinvertions

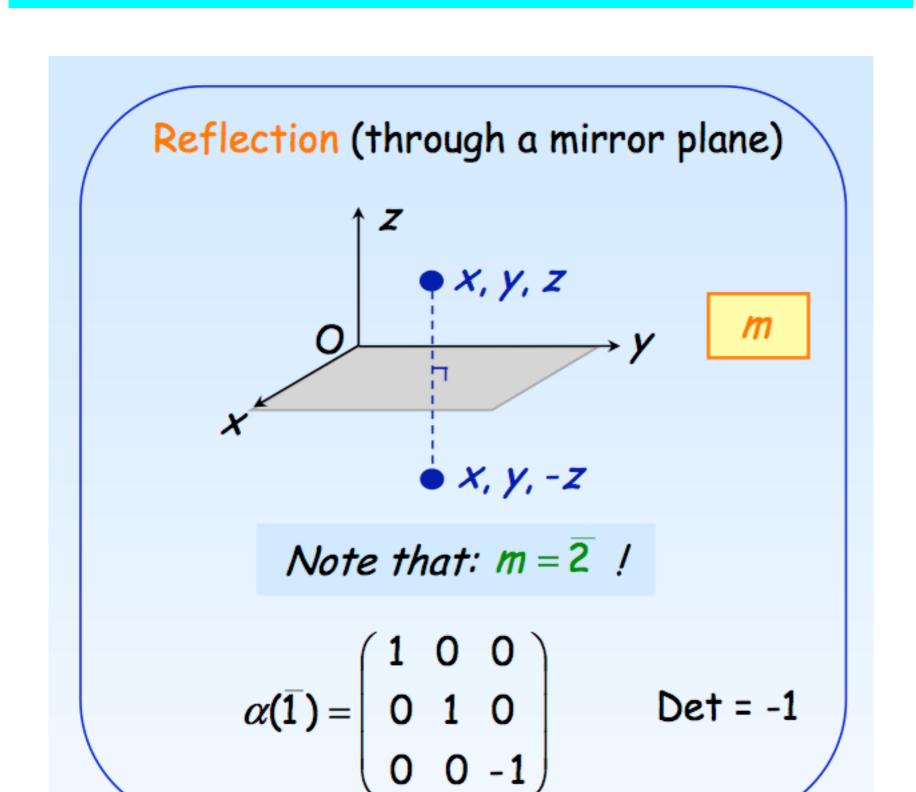
Inversion (through a point)



a crystal which has the inversion symmetry is called centrosymmetrical.

$$\alpha(\bar{1}) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad \text{Det = -1}$$

Symmetry operations in 3D Rotoinvertions

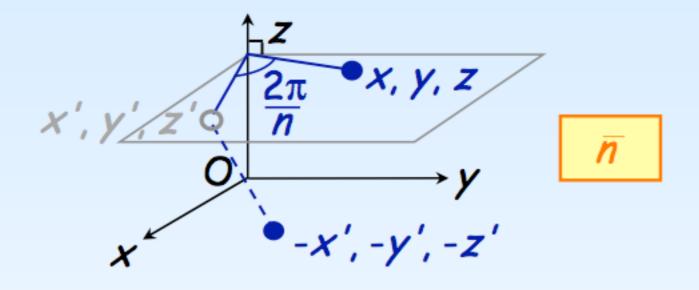


Symmetry operations in 3D Rotoinversions

Roto-inversion

(around an axis and through a point)

Rotation followed by an inversion

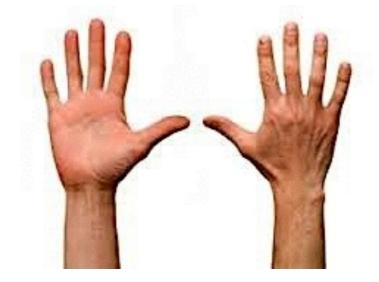


$$\alpha(\overline{n}) = \begin{pmatrix} -\cos\varphi & \sin\varphi & 0 \\ -\sin\varphi & -\cos\varphi & 0 \\ 0 & 0 & -1 \end{pmatrix} \quad \text{Det = -1}$$

Crystallographic Point Groups in 3D

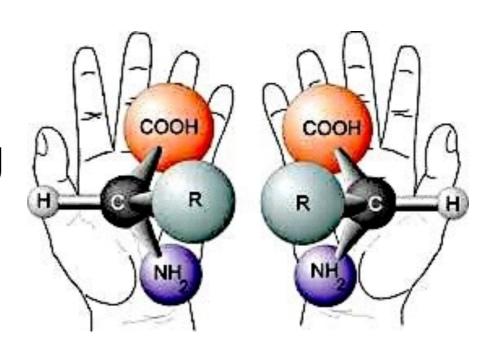
Proper rotations: det =+1: 1 2 3 4 6

chirality preserving



Improper rotations: $det = -1: \overline{1} \ \overline{2} = m \ \overline{3} \ \overline{4} \ \overline{6}$

chirality non-preserving



Hermann-Mauguin symbolism (International Tables A)

-symmetry elements along primary, secondary and ternary symmetry directions

rotations: by the axes of rotation planes: by the normals to the planes

-symmetry elements in decreasing order of symmetry (except for two cubic groups: 23 and m3)

Crystal systems and Crystallographic point groups

Crystal system	Crystallographic point groups†	Restrictions on cell parameters	primary secondary		ternary
Triclinic	1, 1	None	None		
Monoclinic	2, m, 2/m	b -unique setting $lpha=\gamma=90^\circ$	[010] ('unique axis b') [001] ('unique axis c')		
		c -unique setting $lpha=eta=90^\circ$			
Orthorhombic	222, mm2, mmm	$lpha=eta=\gamma=90^\circ$	[100]	[010]	[001]
Tetragonal	$4, \overline{4}, 4/m$ $422, 4mm, \overline{4}2m,$ 4/mmm	$a=b$ $\alpha=\beta=\gamma=90^\circ$	[001]	{ [100] } [010] }	$\left\{ \begin{bmatrix} 1\bar{1}0\\ 110 \end{bmatrix} \right\}$

Crystal systems and Crystallographic point groups

Crystal system	Crystallographic point groups†	Restrictions on cell parameters	primary	secondary	ternary
Trigonal	3, $[3]$ 32, 3 <i>m</i> , $[3m]$	a = b $\alpha = \beta = 90^{\circ}, \ \gamma = 120^{\circ}$ a = b = c			
		$\alpha = \beta = \gamma$ (rhombohedral axes, primitive cell)	[111]	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ [01\bar{1}]\\ [\bar{1}01] \end{bmatrix} \right\} $	
	$a=b$ $lpha=eta=90^\circ, \gamma=120^\circ$ (hexagonal axes, triple obverse cell)	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline{1}\bar{1}0 \end{bmatrix} \right\} $		
Hexagonal	$6, \overline{6}, 6/m$ $622, 6mm, \overline{6}2m,$ 6/mmm	$a=b$ $lpha=eta=90^\circ, \gamma=120^\circ$	[001]	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ \hline{1}\overline{1}0 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0\\ 120\\ \bar{2}\bar{1}0 \end{bmatrix} \right\} $
Cubic	23, <u>m3</u> 432, 43m, <u>m3m</u>	a = b = c $\alpha = \beta = \gamma = 90^{\circ}$	$ \left\{ \begin{bmatrix} 100 \\ 010 \\ 001 \end{bmatrix} \right\} $	$ \left\{ \begin{bmatrix} 111 \\ 11\overline{1} \\ 11\overline{1} \\ 11\overline{1} \\ 1\overline{1} \\ 111 \right\} $	$ \left\{ \begin{bmatrix} 1\bar{1}0 \\ 01\bar{1} \end{bmatrix} \begin{bmatrix} 110 \\ 011 \end{bmatrix} \right\} $ $ \left[\bar{1}01 \\ 101 \end{bmatrix} $

Crystallographic Point Groups in 3D

	Point group			
System used in	International	l symbol	Schoenflies	
this volume	Short	Full	symbol	
Triclinic	1	1	C_1	T
	1	1	$C_i(S_2)$	
Monoclinic	2	2	C ₂	7
	m	m	$C_s(C_{1h})$	
	2/m	$\frac{2}{m}$	C_{2h}	
Orthorhombic	222	222	$D_2(V)$	1
	mm2	mm2	C_{2v}	
	mmm	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	$D_{2h}(V_h)$	
Tetragonal	4	4	C ₄	7
	4	4	S_4	
	4/m	$\frac{4}{m}$	C_{4h}	
	422	422	D_4	
	4mm	4mm	C_{4v}	
	$\overline{4}2m$	$\overline{4}2m$	$D_{2d}(V_d)$	
	4/mmm	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	D_{4h}	

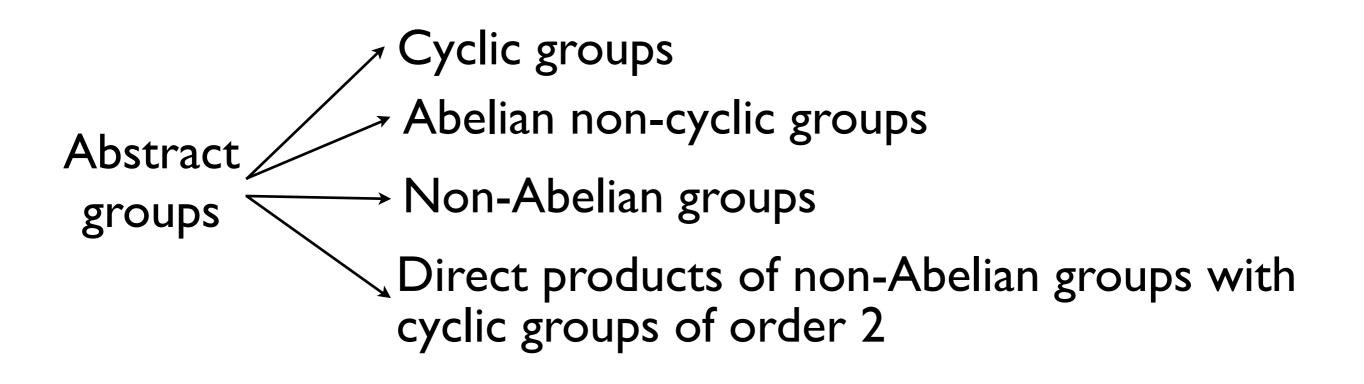
· ·			
International	Tables for	Crystallograph	y, Vol. A

_				
	Trigonal	3 3 32	3 3 32	C_3 $C_{3i}(S_6)$ D_3
		3 <i>m</i>	3 <i>m</i>	C_{3v}
		$\overline{3}m$	$\overline{3}\frac{2}{m}$	D_{3d}
	Hexagonal	6	6	C ₆
		6	<u>6</u>	C_{3h}
		6/ <i>m</i>	$\frac{o}{m}$	C _{6h}
		622	622	D_6
١		6mm	6mm	C_{6v}
١		62m	62 <i>m</i>	D_{3h}
		6/mmm	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	D_{6h}
	Cubic	23	23	T
		$m\overline{3}$	$\frac{2}{m}\overline{3}$	T_h
		432	432	0
		4 3 <i>m</i>	4 3 <i>m</i>	T_d
		$m\overline{3}m$	$\frac{4}{3}m$ $\frac{4}{m}\frac{2}{m}$	O_h
1				ı

Symbol	order	HM symbols
C_1	1	1
C_2	2	$2,\ m,\ \overline{1}$
C_3	3	3
C_4	4	$4, \overline{4}$
$C_6 \equiv C_3 \times C_2$	6	$\overline{3}$, 6, $\overline{6}$
$\mathcal{D}_2 \equiv \mathcal{C}_2 imes \mathcal{C}_2$	4	$2/m,\ 222,\ mm2$
\mathcal{D}_3	6	32, 3m
\mathcal{D}_4	8	$422,\ 4mm,\ \overline{4}2m$
$\mathcal{D}_6 \equiv \mathcal{D}_3 \times \mathcal{C}_2$	12	$\overline{3}m$, 622, 6 mm , $\overline{6}2m$
${\cal D}_{2h} \equiv {\cal C}_2 imes {\cal C}_2 imes {\cal C}_2$	8	mmm
${\cal C}_{4h} \equiv {\cal C}_4 imes {\cal C}_2$	8	4/m
${\cal C}_{6h} \equiv {\cal C}_6 imes {\cal C}_2$	12	6/m
${\cal D}_{4h} \equiv {\cal D}_4 imes {\cal C}_2$	16	4/mmm
${\cal D}_{6h} \equiv {\cal D}_6 imes {\cal C}_2$	24	6/mmm
\mathcal{T}	12	23
${\cal T}_h \equiv {\cal T} imes {\cal C}_2$	24	$m\overline{3}$
O	24	$432, \overline{4}3m$
$\mathcal{O}_h \equiv \mathcal{O} imes \mathcal{C}_2$	48	$m\overline{3}m$

Crystallographic point groups as abstract groups

Crystallographic point groups and abstract groups



Direct-product groups

Let G_1 and G_2 are two groups. The set of all pairs $\{(g_1,g_2), g_1 \in G_1, g_2 \in G_2\}$ forms a group $G_1 \otimes G_2$ with respect to the product: (g_1,g_2) $(g'_1,g'_2)=(g_1g'_1,g_2g'_2)$.

The group $G = G_1 \otimes G_2$ is called a **direct-product** group

Properties of $G_1 \otimes G_2$

(i)
$$G_1 \otimes G_2 \triangleright \{(g_1,e_2), g_1 \in G_1\} \cong G_1$$

 $G_1 \otimes G_2 \triangleright \{(e_1,g_2), g_2 \in G_2\} \cong G_2$

$$(ii)^{\{(g_1,e_2), g_1 \in G_1\}} \cap \{(e_1,g_2), g_2 \in G_1\} = \{(e_1,e_2)\}$$

(iii)
$$\forall$$
 (g₁,g₂) \in G₁ \otimes G₂: (g₁,g₂) $=$ (g₁,e₂) (e₁,g₂)

Examples: Direct product groups

Point group mm2 =
$$\{1,2_z,m_x,m_y\}$$

 $G_1 = \{1,2_z\}$ $G_2 = \{1,m_x\}$
 $G_1 \otimes G_2 = \{1.1, 2_z.1, 1.m_x, 2_zm_{x=}m_y\}$

Centro-symmetrical groups

 G_1 : rotational groups $G_2=\{I,\overline{I}\}$ group of inversion

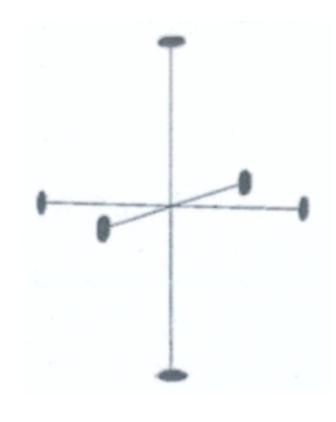
$$G_1 \otimes \{I,\overline{I}\}=G_1+\overline{I}.G_1$$

Rotation Crystallographic Point Groups in 3D

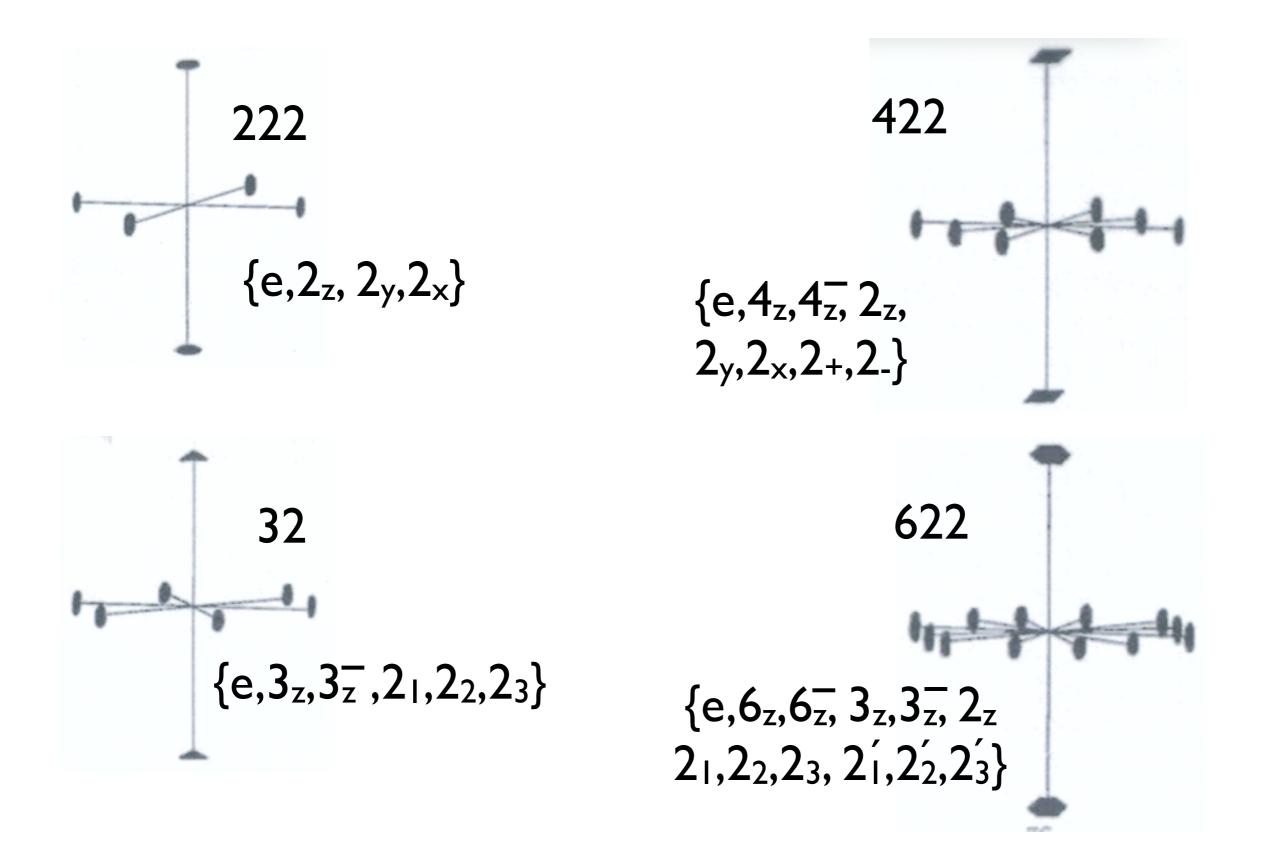
Cyclic: $I(C_1)$, $2(C_2)$, $3(C_3)$, $4(C_4)$, $6(C_6)$

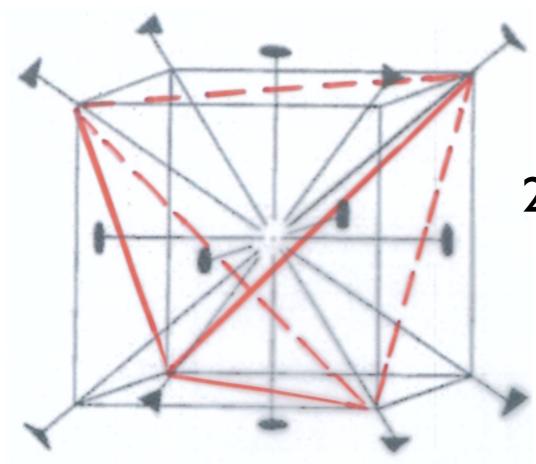
Dihedral: $222(D_2)$, $32(D_3)$, $422(D_4)$, $622(D_6)$

Cubic: 23 (T), 432 (O)



Dihedral Point Groups



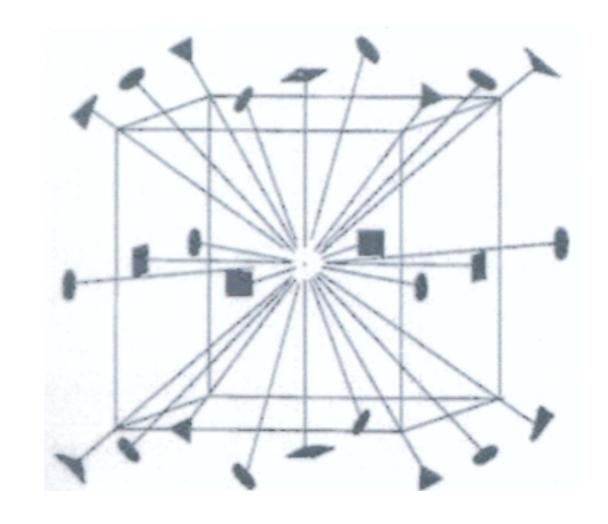


Cubic Rotational Point Groups

23 (T)

$$\{e, 2_x, 2_y, 2_z, \\ 3_1, 3_1, 3_2, 3_2, 3_3, 3_3, 3_3, 3_4, 3_4\}$$

432(O)



Crystallographic Point Groups

G	G+ĪG	G(G')	G'+T(G-G')
	$I+\overline{I}.I=\overline{I}$ (C _i)		
2 (C ₂)	$2+\overline{1}.2=2/m$ (C _{2h})	2(1)	$m(C_s)$
3 (C ₃)	$3+\overline{1}.3=\overline{3}$ (C _{3i} or S ₆)		
4 (C ₄)	$4+\overline{1}.4=4/m$ (C _{4h})	4(2)	4 (S ₄)
6 (C ₆)	6+T.6=6/m (C _{6h})	6(3)	6 (C _{3h})

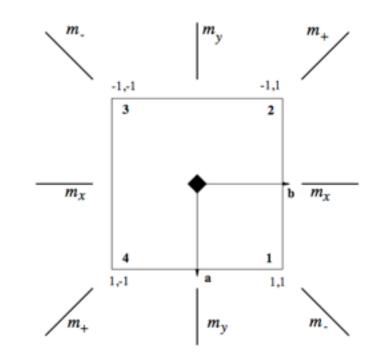
Crystallographic Point Groups

G	G+ĪG	$G(G')$ $G'+\overline{I}(G-G')$
222 (D ₂)	222+T.222=2/m2/m2/m mmm (D _{2h})	222(2) 2mm (C _{2v})
32 (D ₃)	$32+\overline{1}.32=\overline{3}2/m\ \overline{3}m(D_{3d})$	32(3) 3m (C _{3v})
422 (D ₄)	422+T.422=4/m2/m2/m 4/mmm(D _{4h})	422(4) 4mm (C _{4v}) 422(222) 42m (D _{2d})
622 (D ₆)	622+T.622=6/m2/m2/m 6/mmm(D _{6h})	622(6) 6mm (C _{6v}) 622(32) 62m (D _{3h})
23 (T)	$23+\overline{1}.23=2/m3$ m $\overline{3}$ (T _h)	
432 (O)	$432+\overline{1}.432=4/m32/m$ $m\overline{3}m(O_h)$	432(23) 43m (Td)

Crystallographic Point Groups

Groups isomorphic to 422

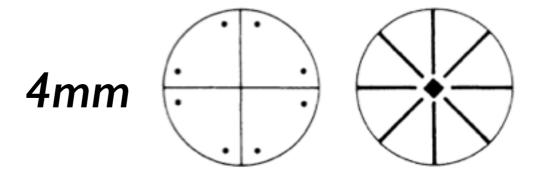
422	е	$4_z 4_z^-$	2_{z}	2 _x 2 _y	2+2-
4mm	e	4 _z 4 _z	2 _z	m _x m _y	m+m-
4 2m	е	$\bar{4}_z \bar{4}_z^-$	2_{z}	$2_x 2_y$	m+m-
4 m2	е	$\bar{4}_z \bar{4}_z^-$	2_{z}	$m_x m_y$	2+2-



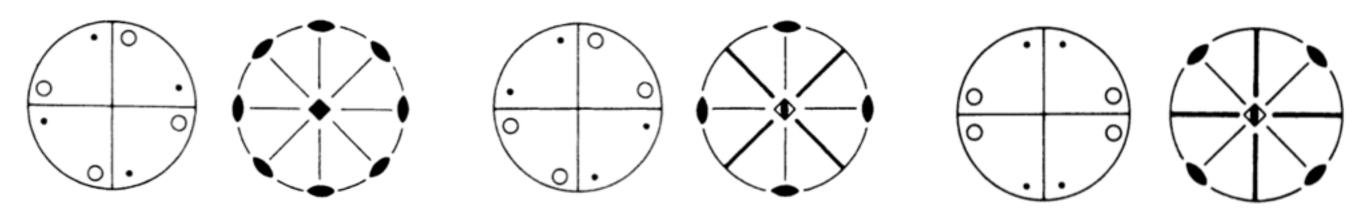
Groups isomorphic to 622

622	е	6z6z	$3_z3_z^-$	2 _z	212223	2'12'22'3
6mm	е	6z6z	$3_z3_z^-$	2_{z}	$m_1m_2m_3$	m' ₁ m' ₂ m' ₃
6 2m	е	$\bar{6}_z\bar{6}_z$	$3_z3_z^-$	m_{z}	$2_{1}2_{2}2_{3}$	$m_1m_2m_3$
6 m2	е	$\bar{6}_z\bar{6}_z^-$	$3_z3_z^-$	m_{z}	$m_1m_2m_3$	$2_{1}^{\prime}2_{2}^{\prime}2_{3}^{\prime}$

Problem 2.11



Consider the following three pairs of stereographic projections. Each of them correspond to a crystallographic point group isomorphic to **4mm**:



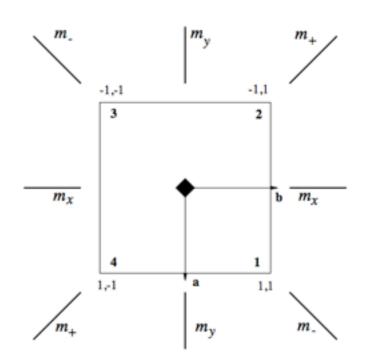
- (i) Determine those point groups by indicating their symbols, symmetry operations and possible sets of generators;
- (ii) Construct the corresponding multiplication tables;
- (iii) For each of the isomorphic point groups indicate the one-to-one correspondence with the symmetry operations of **4mm**.

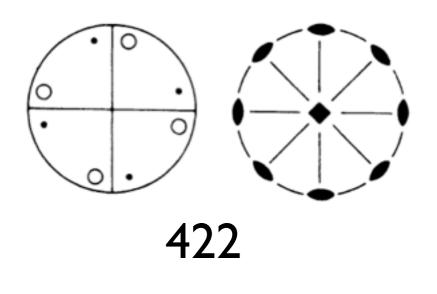
Problem 2.11

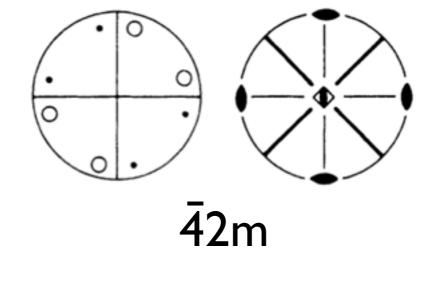
SOLUTION

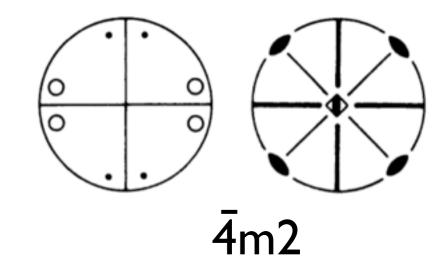
Groups isomorphic to 4mm

4mm	е	$4_z 4_z^-$	2 _z	m _x m _y	m+m₋
422	e	$4_z 4_z^-$	2_{z}	$2_{x} 2_{y}$	2+2-
- 42m	е	$\bar{4}_z \bar{4}_z^-$	2_{z}	$2_x 2_y$	m+m-
4 m2	е	$\bar{4}_z \bar{4}_z^-$	2_{z}	m _x m _y	2+2-









GENERATION OF CRYSTALLOGRAPHIC POINT GROUPS

Generation of point groups

Crystallographic groups are solvable groups

Composition series:
$$I \triangleleft Z_2 \triangleleft Z_3 \triangleleft ... \triangleleft G$$
 index 2 or 3

Set of generators of a group is a set of group elements such that each element of the group can be obtained as an ordered product of the generators

$$W = (g_h)^{k_h} * (g_{h-1})^{k_{h-1}} * ... * (g_2)^{k_2} * g_1$$

g₁ - identity

g₂, g₃, ... - generate the rest of elements

Generation of the group of the square

$$2 = \{I\} + 2_z \{I\}$$

Step 3:

$$4 = \{1,2\} + 4_z \{1,2\}$$

Step 4:

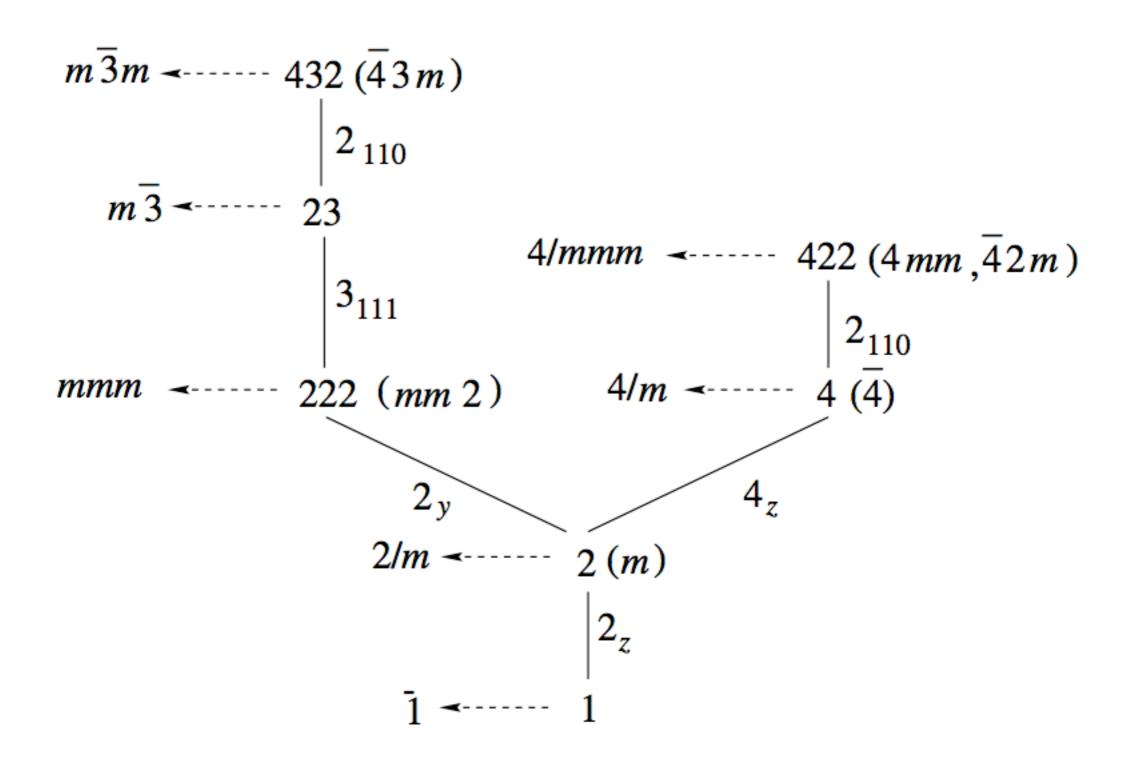
$$4mm = 4 + m_{x} 4$$

Composition series:
$$I \stackrel{2z}{\triangleleft} 2 \stackrel{4z}{\triangleleft} 4 \stackrel{m_x}{\triangleleft} 4mm$$
 (2) [2] [2] [2]

	1	2	4	4^{-1}	m_x	m_+	m_y	m_{-}
1	1	2	4	4^{-1}	m_x	$\overline{m_+}$	m_y	m_{-}
2	2	1	4^{-1}				_	m_+
4	4	4^{-1}	2					m_x
4^{-1}	4^{-1}	4	1	2	m_{-}	m_x	m_{+}	m_y
m_x					. 1	-		
m_+							-	
					2			4^{-1}
m_{-}							4	1

Multiplication table of 4mm

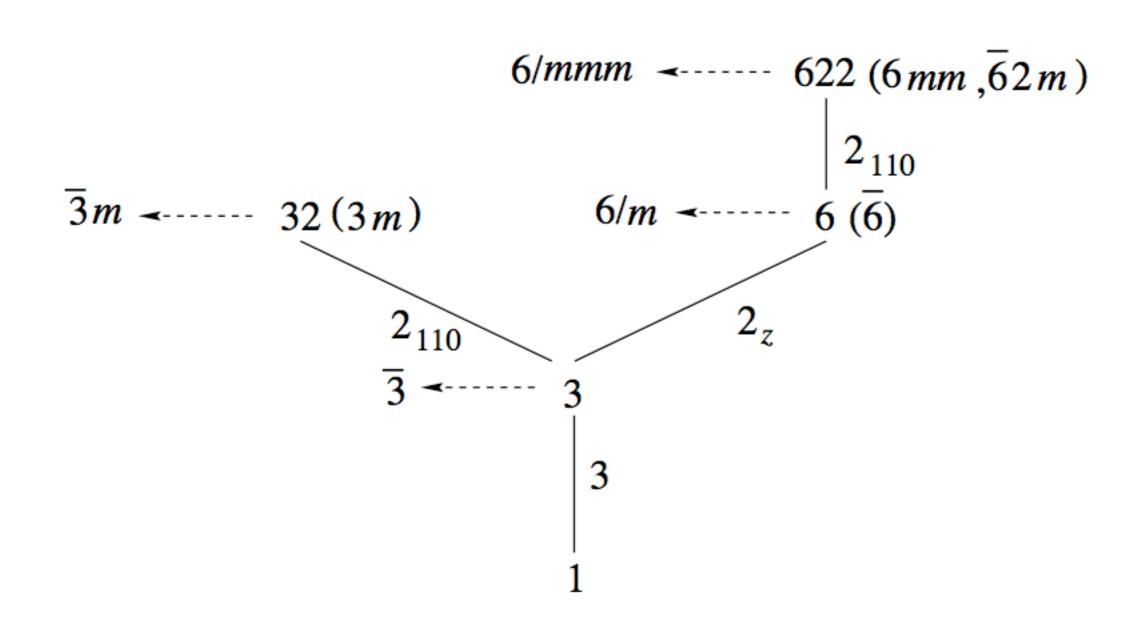
Generation of sub-cubic point groups



Composition series of cubic point groups and their subgroups

HM Symbol	SchoeSy	generators	compos. series
1	C_1	1	1
$\overline{1}$	C_i	$1, \overline{1}$	$\overline{1} \triangleright 1$
2	C_2	1, 2	$2 \rhd 1$
m	${\cal C}_s$	1, m	$m \rhd 1$
2/m	C_{2h}	$1, 2, \overline{1}$	$2/m\rhd 2\rhd 1$
222	\mathcal{D}_2	$1, 2_z, 2_y$	$222\rhd 2\rhd 1$
mm2	C_{2v}	$1, 2_z, m_y$	$mm2\rhd 2\rhd 1$
mmm	\mathcal{D}_{2h}	$1, 2_z, 2_y, \overline{1}$	$mmm \rhd 222 \rhd \dots$
4	C_4	$1, 2_z, 4$	$4 \rhd 2 \rhd 1$
$\overline{4}$	${\cal S}_4$	$1, 2_z, \overline{4}$	$\overline{4} \rhd 2 \rhd 1$
4/m	${\cal C}_{4h}$	$1, 2_z, 4, \overline{1}$	$4/m \rhd 4 \rhd \dots$
422	\mathcal{D}_4	$1, 2_z, 4, 2_y$	$422 \rhd 4 \rhd \dots$
4mm	C_{4v}	$1, 2_z, 4, m_y$	$4mm \rhd 4 \rhd \dots$
$\overline{4}2m$	\mathcal{D}_{2d}	$1, 2_z, \overline{4}, 2_y$	$\overline{4}2m \rhd \overline{4} \rhd \dots$
4/mmm	\mathcal{D}_{4h}	$1, 2_z, 4, 2_y, \overline{1}$	$4/mmm \rhd 422 \rhd \dots$
23	\mathcal{T}	$1, 2_z, 2_y, 3_{111}$	$23 \rhd 222 \rhd \dots$
$m\overline{3}$	${\cal T}_h$	$1, 2_z, 2_y, 3_{111}, \overline{1}$	$m\overline{3} \rhd 23 \rhd \dots$
432	0	$1, 2_z, 2_y, 3_{111}, 2_{110}$	$432 \triangleright 23 \triangleright \dots$
$\overline{4}3m$	${\cal T}_d$	$1, 2_z, 2_y, 3_{111}, m_{1\overline{1}0}$	$\overline{4}3m \rhd 23 \rhd \dots$
$m\overline{3}m$	\mathcal{O}_h	$1,2_z,2_y,3_{111},2_{110},\overline{1}$	$m\overline{3}m \rhd 432 \rhd \dots$

Generation of sub-hexagonal point groups



Composition series of hexagonal point groups and their subgroups

HM Symbol	SchoeSy	generators	compos. series
1	${\cal C}_1$	1	1
3	C_3	1, 3	$3 \triangleright 1$
3	${\cal S}_6$	$1, 3, \overline{1}$	$\overline{3} \rhd 3 \rhd 1$
32	\mathcal{D}_3	$1, 3, 2_{110}$	$32 \rhd 3 \rhd 1$
3m	C_{3v}	$1, 3, m_{110}$	$3m \rhd 3 \rhd 1$
$\overline{3}m$	\mathcal{D}_{3d}	$1,3,2_{110},\overline{1}$	$\overline{3}m \rhd 32 \rhd \dots$
6	C_6	$1, 3, 2_z$	$6 \rhd 3 \rhd 1$
$\overline{6}$	C_{3h}	$1, 3, m_z$	$\overline{6} \rhd 3 \rhd 1$
6/m	C_{6h}	$1,2,2_z,\overline{1}$	$6/m \rhd 6 \rhd \dots$
622	\mathcal{D}_6	$1, 3, 2_z, 2_{110}$	622 ⊳ 6 ⊳
6mm	C_{6v}	$1, 3, 2_z, m_{110}$	$6mm \rhd 6 \rhd \dots$
$\overline{6}2m$	\mathcal{D}_{3h}	$1, 3, m_z, 2_{110}$	$\overline{6}2m \rhd \overline{6} \rhd \dots$
6/mmm	\mathcal{D}_{6h}	$1,3,2_z,2_{110},\overline{1}$	$6/mmm \rhd 622 \rhd \dots$

Problem 2.13

Generate the symmetry operations of the group 4/mmm following its composition series.

Generate the symmetry operations of the group $\overline{3m}$ following its composition series.