A quick introduction to crystallographic orbits

Didactic material for the MaThCryst schools

Massimo Nespolo, Université de Lorraine, France
massimo.nespolo@univ-lorraine.fr
A **crystallographic orbit** is the (infinite) set of atoms obtained from a given atom under the action of the symmetry operations of the space group of the crystal.

A **crystal structure** consists of one or more crystallographic orbits.

Each crystallographic orbit possesses an **eigensymmetry** that is equal or higher than the **space group** that has generated the orbit.

The space group of a crystal structure is the **intersection group** of the groups that correspond to the eigensymmetry of each crystallographic orbit occupied by a type of atom in the crystal structure.
Classification of crystallographic orbits

\[G = \text{space group of the crystal structure} \]
\[E = \text{eigensymmetry of the crystallographic orbit} \]

\[G = E : \text{characteristic orbit} \]
\[G <(t)* E : \text{non-characteristic orbit} \]
\[G < E, T(G) < T(E) : \text{extraordinary orbit} \]

* (t) translationengleiche subgroup (same translations, common lattice)
Effects of the crystallographic orbits on the diffraction pattern

Atoms on **characteristic** orbits contribute to the diffraction pattern with the same symmetry as the space group.

Atoms on **non-characteristic** orbits contribute to the diffraction pattern with a symmetry higher than that of the space group.

Atoms on **extraordinary** orbits contribute only to a (reciprocal!) sub-lattice of the diffraction lattice of the crystal structure (**special systematic absences**).

The special systematic absences appear only for a **limited number of cases** in the *International Tables of Crystallography*.
Exercises
(Only the generators of E that are not contained in G are shown in the following slides)
A simple example

Find the eigensymmetry of the general orbit
A simple example

$P2$ \hspace{1cm} C_{2}^1 \hspace{1cm} 2 \hspace{1cm} Monoclinic

No. 3 \hspace{1cm} $P121$ \hspace{1cm} Patterson symmetry $P12/m1$

UNIQUE AXIS b

$P2/m$, $P(111)$

non-caractéristic orbit
The notion of intersection group

The space group of a crystal structure is the intersection group of the groups that correspond to the eigensymmetry of each crystallographic orbit occupied by a type of atom in the crystal structure.

Let's see one example with two general orbits in a space group of type P2
Two general orbits in $P2$

$P2/m, P(111) \cap P2/m, P(111) = P2, P(111)$
A more complex example

$Fm\overline{m}2$ C_{2v}^{18} $m\overline{m}2$ Orthorhombic

No. 42 $Fm\overline{m}2$

Patterson symmetry $Fm\overline{m}m$

Analyse ALL types of orbits
$Fmm2$, orbit 16 e
Non-characteristic orbit

Eigensymmetry: $Fmmm$
Lattice $F(1,1,1)$
Fmm2, orbit 16 e, y = 1/4

Extraordinary orbit

Eigensymmetry: \(Pmmm \)

Lattice \(P(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \)

Reflection conditions: \(hkl : h, k, l = 2n \)
\(Fmm2\), orbit 16 e, \(x = 1/4\)

Extraordinary orbit

Eigensymmetry: \(Pmmm\)

Lattice \(P(1/2,1/2,1/2)\)

Reflection conditions: \(hkl : h, k, l = 2n\)
Fmm2, orbit 16 e, x = 1/8, y = 1/4

Eigensymmetry: Pmmm

Lattice P(¼,½,½)

Extraordinary orbit

Reflection conditions: $hkl : k = 2n, l = 2n, h = 4n$
Fmm2, orbit 16 e, x = 1/4, y = 1/8

Extraordinary orbit

Eigensymmetry: $Pmmm$

Lattice $P(\frac{1}{2}, \frac{1}{4}, \frac{1}{2})$

Reflection conditions: $hkl : h, l = 2n, k = 4n$
$Fmm2$, orbit 8 d

Non-characteristic orbit

Eigensymmetry: $Fmmm$
Lattice $F(1,1,1)$
Fmm2, orbit 8 d, x = 1/4

Extraordinary orbit

Eigensymmetry: Pmmm
Lattice \(P(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \)

Reflection conditions: \(hkl : h, k, l = 2n \)
$Fmm2$, orbite8 c

Non-characteristic orbit

Eigensymmetry: $Fmmm$
Lattice $F(1,1,1)$
Fmm2, orbit 8 c, y = 1/4

Eigensymmetry: \(Pmmm \)

Lattice: \(P(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}) \)

Extraordinary orbit

Reflection conditions: \(hkl : h, k, l = 2n \)
Fmm2, orbit 8 b

Extraordinary orbit

Reflection conditions: $hkl : h, k, l = 2n$

Eigensymmetry: $Pmmm$

Lattice $P(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$
Fmm2, orbit 4 a

Non-characteristic orbit

Eigensymmetry: Fmmm
Lattice F(1,1,1)
Summary

orbits 16 \(e \), 8 \(d \), 8 \(c \), 4 \(a \)

- non-characteristic
 Eigensymmetry: \(Fmmm \)
 Lattice \(F(1,1,1) \)

orbit 16 \(e \), \(x = 1/4 \) or \(y = 1/4 \)

- extraordinary
 Eigensymmetry: \(Pmmm \)
 Lattice \(P(\frac{1}{2},\frac{1}{2},\frac{1}{2}) \)

orbit 8 \(d \), \(x = 1/4 \) or \(y = 1/4 \)

orbit 8 \(b \)

orbit 16 \(e \), \(x = 1/8 \), \(y = 1/4 \)

- extraordinary
 Eigensymmetry: \(Pmmm \)
 Lattice \(P(\frac{1}{4},\frac{1}{2},\frac{1}{2}) \)

orbit 16 \(e \), \(x = 1/4 \) and \(y = 1/8 \)

- extraordinary
 Eigensymmetry: \(Pmmm \)
 Lattice \(P(\frac{1}{2},\frac{1}{4},\frac{1}{2}) \)

No characteristic orbit in this type of space group!
Another interesting example

$I\bar{4}c\bar{2}$
No. 120

D_{2d}^{10}
$I\bar{4}c\bar{2}$

$\bar{4}m2$
Tetragonal

Patterson symmetry $I4/\text{mmm}$

Analysis of some types of orbits
$\bar{I}4c2$ orbit 16 i

Characteristic orbit

Eigensymmetry: $\bar{I}4c2$
Lattice $I(1,1,1)$
$ar{I}4c2$ orbit 16 i, $x x z$

Non-characteristic orbit

Eigensymmetry: $I4/mcm$
Lattice $I(1,1,1)$
\[\overline{I}4c2 \text{ orbit } 16 \ i \ x \ y \ 0 \]

Non-characteristic orbit

Eigensymmetry: \(I4/mcm \)

Lattice \(I(1,1,1) \)
$\bar{I}4c2$ orbit 16 i x 1/4 1/8

Non-characteristic orbit

Eigensymmetry: $I4_1/acd$
Lattice $I(1,1,1)$
$\bar{I}4c2$ orbit $16 \, i \times 0 \, z$

Extraordinary orbit

Reflection conditions: $hkl : h+k = 2n$, $l = 2n$

Eigensymmetry: $P\bar{4}m2$

Lattice $C(1,1,1/2)$
$\bar{I}4c2$ orbit 8 h

Non-characteristic orbit

Eigensymmetry: $I\bar{4}/mcm$
Lattice $I(1,1,1)$
$\overline{I}4c2$ orbit 8 $h, x = 1/4$

Eigensymmetry: $P4/mmm$

Lattice $P(1/2,1/2,1/2)$

Reflection conditions: $hkl : h,k,l = 2n$
I4c2 complete analysis

Space group No. 120 I4c2

Superlattices

<table>
<thead>
<tr>
<th>SL</th>
<th>Lattice</th>
<th>Density</th>
<th>Add. Gen.</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>I(1,1,1)</td>
<td>1</td>
<td>add. gen.</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>1</td>
<td>C(1,1,1/2)</td>
<td>2</td>
<td>add. gen.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C(1,1,1/4)</td>
<td>4</td>
<td>add. gen.</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>3</td>
<td>P(1/2,1/2,1/2)</td>
<td>4</td>
<td>add. gen.</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P(1/2,1/2,1/4)</td>
<td>8</td>
<td>add. gen.</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C(1/2,1/2,1/2)</td>
<td>8</td>
<td>add. gen.</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>I(1/2,1/2,1/2)</td>
<td>8</td>
<td>add. gen.</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

Wyckoff letter

<table>
<thead>
<tr>
<th>SL</th>
<th>Lattice</th>
<th>Non-characteristic crystallographic orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>x, y, 0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>x, 1/4, 1/8</td>
</tr>
<tr>
<td>3</td>
<td>1/4, 1/4, 1/4</td>
<td>P4/mmm (2g, h)</td>
</tr>
<tr>
<td>4</td>
<td>1/4, 0, 0</td>
<td>P4/mmm (2a, b)</td>
</tr>
<tr>
<td>5</td>
<td>1/4, 0, 1/4</td>
<td>I4/mcm (2a, b)</td>
</tr>
</tbody>
</table>

31 / 39
An easier example, yet...

Pbam

No. 55

D_{2h}^9

$P \ 2_1/b \ 2_1/a \ 2/m$

mmm

Orthorhombic

Analyse ALL the orbit types

Patterson symmetry $Pmmm$
<table>
<thead>
<tr>
<th>Superlattices</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL 1 P(1/2,1,1)</td>
</tr>
<tr>
<td>SL 2 P(1,1/2,1)</td>
</tr>
<tr>
<td>SL 3 P(1,1,1/2)</td>
</tr>
<tr>
<td>SL 4 C(1,1,1)</td>
</tr>
<tr>
<td>SL 5 P(1/2,1/2,1)</td>
</tr>
<tr>
<td>SL 6 C(1,1,1/2)</td>
</tr>
<tr>
<td>SL 7 P(1,1/2,1/2)</td>
</tr>
<tr>
<td>SL 8 C(1,1,1/2)</td>
</tr>
<tr>
<td>SL 9 P(1/2,1/2,1)</td>
</tr>
<tr>
<td>SL 10 P(1,1/2,1/2)</td>
</tr>
<tr>
<td>SL 11 P(1,1,1/2)</td>
</tr>
<tr>
<td>SL 12 C(1,1,1/2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wyckoff letter</th>
<th>non-characteristic crystallographic orbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 i 1 SL 1 x,1/4,z</td>
<td>Pbam (4k)</td>
</tr>
<tr>
<td>SL 2 1/4,y,z</td>
<td>Pbam (4k)</td>
</tr>
<tr>
<td>SL 3 x,y,1/4</td>
<td>Pbam (4g,h)</td>
</tr>
<tr>
<td>SL 4 x,0,z</td>
<td>Cmm (8n,o)</td>
</tr>
<tr>
<td>SL 5 1/4,0,z</td>
<td>Pbam (2i-t)</td>
</tr>
<tr>
<td>SL 6 1/4,1/4,z</td>
<td>Pbam (2i-t)</td>
</tr>
<tr>
<td>SL 7 0,1/2,z</td>
<td>Cmm (2i-t)</td>
</tr>
<tr>
<td>SL 8 1/4,1/4,z</td>
<td>Pbam (2i-t)</td>
</tr>
<tr>
<td>SL 9 3/8,1/4,z</td>
<td>Cmm (4k,l)</td>
</tr>
<tr>
<td>SL 10 1/4,1/4,z</td>
<td>Cmm (4k,l)</td>
</tr>
<tr>
<td>SL 11 1/4,0,1/4</td>
<td>Cmm (4k,l)</td>
</tr>
<tr>
<td>SL 12 0,1/4,z</td>
<td>Cmm (4k,l)</td>
</tr>
<tr>
<td>SL 13 3/8,1/4,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 14 1/4,0,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 15 3/8,1/4,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 16 1/4,0,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 17 x,1/4,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 18 3/8,1/4,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 19 1/4,3/8,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 20 1/4,3/8,1/4</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 21 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 22 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 23 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 24 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 25 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 26 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 27 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 28 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 29 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 30 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 31 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 32 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
<tr>
<td>SL 33 1/4,0,1/2</td>
<td>Pbam (2e,.f)</td>
</tr>
<tr>
<td>SL 34 3/8,1/4,1/2</td>
<td>Cmm (2a-d)</td>
</tr>
</tbody>
</table>

Something is missing
Pbam tetragonal metric, orbit 8 $i, x = y$

Eigensymmetry: $P4/mbm$
Lattice $P(1,1,1)$

Non-characteristic orbit

All atoms : +,-
Same data in E^3

- ∞ space groups
- 219 types of affine space groups
- 230 types crystallographic space groups
- 1731 types Wyckoff positions
- 1128 types of Wyckoff sets – Wyckoff positions conjugates under the normalisers
- 402 lattice complexes – crystallographic orbits classified in types
8.3. Special topics on space groups

BY H. WONDRTSCHK

8.3.1. Coordinate systems in crystallography

The matrices W and the columns w of crystallographic symmetry operations W depend on the choice of the coordinate system. A suitable choice is essential if W and w are to be obtained in a convenient form.

Example

In a space group $I4mm$, the matrix part of a clockwise fourfold rotation around the c axis is described by the W matrix

$$
4^- : \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

if referred to the conventional crystallographic basis a, b, c. Correspondingly, the matrix

$$
m: \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

represents a reflection in a plane parallel to b and c. These matrices are easy to handle and their geometrical significance is evident. Referred to the primitive basis a', b', c', defined by $a' = \frac{1}{2}(-a + b + c)$, $b' = \frac{1}{2}(a - b + c)$, $c' = \frac{1}{2}(a + b - c)$, the matrices representing the same symmetry operations would be

$$
4^- : \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix}; \quad m : \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{pmatrix}.
$$

These matrices are more complicated to work with, and their geometrical significance is less obvious.

The conventional coordinate systems obey rules concerning the vector bases and the origins.

(i) In all cases, the conventional coordinate bases are chosen such that

In a number of cases, the symmetry of the space group determines the conventional vector basis uniquely; in other cases, metrical criteria, e.g. the length of basis vectors, may be used to define a conventional vector basis.

(ii) The choice of the conventional origin in the space-group tables of this volume has been dealt with by Burnell & Zimmermann (1980). In general, the origin is a point of highest site symmetry, i.e. as many symmetry operations W_i as possible leave the origin fixed, and thus have $w_i = o$. Special reasons may justify exceptions from this rule, for example for space groups $I2_12_12_1 \equiv D_3^2$ (No. 24), $P4_332 \equiv O^b$ (No. 212), $P4_132 \equiv O^i$ (No. 213), $I4_132 \equiv O^b$ (No. 214) and $I43d \equiv T_d^2$ (No. 220); cf. Section 2.2.7. If in a centrosymmetric space group a centre of inversion is not a point of highest site symmetry, the space group is described twice, first with the origin in a point of highest site symmetry, and second with the origin in a centre of inversion, e.g. at 222 and at 1 for space group $Pnma \equiv D_{3d}^2$ (No. 48); cf. Section 2.2.1. For space groups with low site symmetries, the origin is chosen so as to minimize the number of nonzero coefficients of the w_i, e.g. on a twofold screw axis for space group $P2_1 \equiv C_2$ (No. 4).

A change of the coordinate system, i.e. referring the crystal pattern and its symmetry operations W to a new coordinate system, results in new coordinates w' and new matrices W'; cf. Section 5.1.3.

8.3.2. (Wyckoff) positions, site symmetries and crystallographic orbits

The concept of positions and their site symmetries is fundamental for the determination and description of crystal structures. Let, for instance, $P1$ be the space group of a crystal structure with tetrahedral AX_4 and triangular BY_3 groups. Then the atoms A and B cannot be located at centres of inversion, as the symmetry of tetrahedra and triangles is incompatible with site symmetry 1. If the space group is $P2_1/m$, again the points with site symmetry $2/m$ cannot be the loci of A or B, but points with site symmetries $2, m$ or...
Where to find more information?
Space Groups and Lattice Complexes

Werner FISHER
Mineralogisches Institut der Philipps-Universität
D-3550 Marburg/Lahn, German Federal Republic

Hans BURZAFF
Lehrstuhl für Kristallographie der
Friedrich-Alexander-Universität Erlangen-Nürnberg
D-8520 Erlangen, German Federal Republic

Erwin HELLNER
Fachbereich Geowissenschaften der Philipps-Universität
D-3550 Marburg/Lahn, German Federal Republic

J. D. H. DONNAY
Département de Géologie, Université de Montréal
CP 6128 Montréal 101, Quebec, Canada
Formerly, The Johns Hopkins University, Baltimore, Maryland

Prepared under the auspices of the Commission on International Tables,
International Union of Crystallography, and the Office of Standard
Reference Data, National Bureau of Standards.

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary
NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director
Issued May 1973
14.1. Introduction and definition

BY W. FISCHER AND E. KOCH

14.1.1. Introduction

In crystal structures belonging to different structure types and showing different space-group symmetries, the relative locations of symmetrically equivalent atoms nevertheless may be the same (e.g. Cl in CsCl and F in CaF$_2$). The concept of lattice complexes can be used to reveal relationships between crystal structures even if they belong to different space-group types.

14.1.2. Definition

The term lattice complex (Gitterkomplex) had originally been created by P. Niggli (1919), but it was not used by him with an unambiguous meaning. Later on, Hermann (1935) modified and specified the concept of lattice complexes, but the rigorous definition used here was proposed much later by Fischer & Koch (1974) [cf. also Koch & Fischer (1978)]. An alternative definition was given by Zimmermann & Burzlaff (1974) at the same time.

To introduce the concept of lattice complexes, relationships between point configurations are regarded.

The set of all points that are symmetrically equivalent to a given one with respect to a certain space group is called a point configuration (cf. also crystallographic orbit; Section 8.3.2).

In each space group, there exist infinitely many point configurations. Given a coordinate system, they may be obtained by varying the coordinates x, y, z of a starting point and by calculating all symmetrically equivalent points.

Point configurations refer to the arrangements of atoms in crystal structures. They are analogous to the crystal forms in crystal morphology, where a crystal form is a set of symmetrically onto each other the site-symmetry groups of the points from the point configurations of the corresponding Wyckoff sets.

According to (i), (ii) and (iii), a lattice complex* is defined as follows:

A lattice complex is the set of all point configurations that may be generated within one type of Wyckoff set.

Example

Take, in a particular space group of type $P4/mmm$, the Wyckoff position $4l$. The points of each corresponding point configuration form squares that replace the points of the tetragonal primitive lattice referring to Wyckoff position $1a$.

For all conceivable point configurations of $4l$, the squares have the same orientation, but their edges have different lengths. Congruent arrangements of squares but shifted by $\frac{1}{2}c$ or by $\frac{1}{2}(a + b)$ or by $\frac{1}{2}(a + b + c)$ give the point configurations of the Wyckoff positions $4m$, $4n$ and $4o$, respectively, in the same space group. The four Wyckoff positions $4l$ to $4o$, all with site symmetry $m2m$, make up a Wyckoff set (cf. Table 14.2.3.2).

They are mapped onto each other, for example, by the translations $\frac{1}{2}c$, $\frac{1}{2}(a + b)$ and $\frac{1}{2}(a + b + c)$, which belong to the Euclidean (and affine) normalizer of the group. If one space group of type $P4/mmm$ is mapped onto another space group of the same type, the Wyckoff set $4l$ to $4o$ as a whole is transformed to $4l$ to $4o$. The individual Wyckoff positions may be interchanged, however. The set of all point configurations from the Wyckoff positions $4l$ to $4o$ of all space groups of type $P4/mmm$ constitutes a lattice complex. Its point configurations may be derived as described above, but now starting from all space groups $P4/mmm$ with all conceivable lengths and orientations of the basis vectors instead of starting from just a particular group.

Accordingly, the point configurations may differ in their orientation, in the size of their squares and in the distances...