An historical introduction to the reciprocal lattice

Didactic material for the MaThCryst schools

Massimo Nespolo, Université de Lorraine, France
massimo.nespolo@univ-lorraine.fr
Morphology and stereographic projection (reminder)
Bravais' polar lattice (1848)
A dual lattice of the direct lattice based on face normals

Auguste Bravais (1811-1863)
Bravais' polar lattice (1848)
A dual lattice of the direct lattice based on face normals

\[\mathbf{a} \times \mathbf{b} = S(001) \]

\[\mathbf{e}_{(001)} = \frac{\mathbf{a} \times \mathbf{b}}{||\mathbf{a} \times \mathbf{b}||} \]

\[V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = S(001)d_{(001)} = S(hkl)d_{(hkl)} \]
Bravais' polar lattice (1848)
A dual lattice of the direct lattice based on face normals

The vector space V^n is realized with a metric in Å obeying the above conditions.
Bravais' polar lattice (1848)
A dual lattice of the direct lattice based on face normals

By construction, the vector $[hkl]^p$ is perpendicular to the face (hkl)
Angles between vectors of the polar lattice are precisely the angles between face normals.

\[
\delta = \pi - \varphi
\]

\[
\cos \delta = \frac{\mathbf{r}_1^p \cdot \mathbf{r}_2^p}{\|\mathbf{r}_1^p\| \cdot \|\mathbf{r}_2^p\|} = \frac{\begin{vmatrix} h_1 & k_1 & l_1 \end{vmatrix}G^p}{\begin{vmatrix} h_1 & k_1 & l_1 \end{vmatrix}}\frac{\begin{vmatrix} h_2 \\ k_2 \\ l_2 \end{vmatrix}}{\begin{vmatrix} h_2 \\ k_2 \\ l_2 \end{vmatrix}}
\]

\[
G^p = \begin{pmatrix} a^p \cdot a^p & a^p \cdot b^p & a^p \cdot c^p \\ b^p \cdot a^p & b^p \cdot b^p & b^p \cdot c^p \\ c^p \cdot a^p & c^p \cdot b^p & c^p \cdot c^p \end{pmatrix}
\]
Use of the polar lattice makes indexing of stereographic poles straightforward – monoclinic example

Parallel to a and b axes
On the c^p axis

Parallel to c and b axes
On the a^p axis

Parallel to a and b axes
On the c^p axis

(001)
(100)
Use of the polar lattice makes indexing of stereographic poles straightforward – hexagonal example

- Parallel to A_2 and C axes
- On the a^p axis
- Same intersection on A_1 and A_2 (positive)
- Half intersection on A_3 (negative)
- On the bisector of a^p and b^p
Use of the polar lattice makes indexing of stereographic poles straightforward – hexagonal example
Then, something happened....

Wilhelm Conrad Röntgen
(1845-1923)
1895 : discovery of X-rays
1912: crystals diffract X-rays

Max von Laue
(1879-1960)
1912: crystals diffract X-rays

X-ray diffraction pattern of ZnS by Friedrich, Knipping and Laue
A diffraction pattern can be indexed with a lattice whose metric is inverse (reciprocal) of the Bravais lattices.

Diffractions make a lattice that can be indexed on the basis of suitably chosen axes.
1913: the reciprocal lattice

Paul Peter Ewald (1888-1985)
The reciprocal lattice

$a^* = (b \times c)/V$, $b^* = (c \times a)/V$, $c^* = (a \times b)/V \quad \text{Å}^{-1}$!

The reciprocal lattice

The reciprocal space is a vector space V^n realized with a metric in Å^{-1}
Linear parameters of the reciprocal lattice

\[a^* = (b \times c)/V, \quad b^* = (c \times a)/V, \quad c^* = (a \times b)/V \]

\[a^* = bcsin\alpha/V, \quad b^* = casin\beta/V, \quad c^* = absin\gamma/V \]

\[a \cdot a^* = a \cdot (b \times c)/V = 1 ; \quad b \cdot b^* = b \cdot (c \times a)/V = 1 ; \quad c \cdot c^* = c \cdot (a \times b)/V = 1 \]

\[\nu_i \cdot \nu_j^* = \delta_{ij} \]

\[V^* = a^* \cdot b^* \times c^* = (b \times c) \cdot (c \times a) \times (a \times b)/V^3 = (b \times c) \cdot [(c \cdot a \times b)a-(c \cdot a \times a)b]/V^3 = (b \times c) \cdot [Va-0b]/V^3 = V^2/V^3 = 1/V \]

\[a = (b^* \times c^*)/V^* ; \quad b = (c^* \times a^*)/V^* ; \quad c = (a^* \times b^*)/V^* \]
Angular parameters of the reciprocal lattice

\[a^* = bcsin\alpha/V, \quad b^* = casin\beta/V, \quad c^* = absin\gamma/V \]

\[a = b^*c^*sin\alpha*/V* \quad ; \quad b^* = a^*c^*sin\beta*/V* \quad ; \quad c^* = a^*b^*sin\gamma*/V* \quad (V^* = 1/V) \]

\[\sin \alpha^* = \frac{a V^*}{b^* c^*} = \frac{a}{V} \frac{V}{abc \sin \beta \sin \gamma} \]

\[\sin \beta^* = \frac{b V^*}{a^* c^*} = \frac{b}{V} \frac{V}{abc \sin \alpha \sin \gamma} \]

\[\sin \gamma^* = \frac{c V^*}{a^* b^*} = \frac{c}{V} \frac{V}{abc \sin \alpha \sin \beta} \]
Metric tensor of the reciprocal lattice

\[G^* = \begin{pmatrix} a^* \cdot a^* & a^* \cdot b^* & a^* \cdot c^* \\ b^* \cdot a^* & b^* \cdot b^* & b^* \cdot c^* \\ c^* \cdot a^* & c^* \cdot b^* & c^* \cdot c^* \end{pmatrix} \]

\[G^* = G^{-1} \ ; \ det(G^*) = 1/det(G) \Rightarrow V^* = 1/V \]

Angles between the \((h_1k_1l_1) \) and \((h_2k_2l_2) \) faces computed as angle between \(r^*(h_1k_1l_1) \) and \(r^*(h_2k_2l_2) \) vectors

\[\cos \left(h_1 \ k_1 \ l_1 \right)^\wedge \left(h_2 \ k_2 \ l_2 \right) = \frac{\langle h_1 \ k_1 \ l_1 | G^* | h_2 \ k_2 \ l_2 \rangle}{\sqrt{\langle h_1 \ k_1 \ l_1 | G^* | h_1 \ k_1 \ l_1 \rangle} \sqrt{\langle h_2 \ k_2 \ l_2 | G^* | h_2 \ k_2 \ l_2 \rangle}} \]
Equidistance of lattice planes

\[e_{hkl}^* = r_{hkl}^* / \| r_{hkl}^* \| \]

\[d_{(hkl)} = e_{hkl}^* \cdot a/h \]

\[d_{(hkl)} = e_{hkl}^* \cdot b/k \]

\[d_{(hkl)} = e_{hkl}^* \cdot c/l \]

\[
\begin{align*}
 d(hkl) &= \frac{a \cdot h a^* + k b^* + l c^*}{\| r_{hkl}^* \|} = \frac{h1 + h0 + l0}{h \| r_{hkl}^* \|} = \frac{1}{r_{hkl}^*} \\
 d(hkl) &= \frac{b \cdot h a^* + k b^* + l c^*}{\| r_{hkl}^* \|} = \frac{h0 + h1 + l0}{k \| r_{hkl}^* \|} = \frac{1}{r_{hkl}^*} \\
 d(hkl) &= \frac{c \cdot h a^* + k b^* + l c^*}{\| r_{hkl}^* \|} = \frac{h0 + h0 + l1}{l \| r_{hkl}^* \|} = \frac{1}{r_{hkl}^*}
\end{align*}
\]
Not really Ewald's discovery....

Reciprocal system of vectors (1881)

Josiah Willard Gibbs
(1839-1903)
VECTOR ANALYSIS

A TEXT-BOOK FOR THE USE OF STUDENTS
OF MATHEMATICS AND PHYSICS

FOUNDED UPON THE LECTURES OF

J. WILLARD GIBBS, Ph.D., LL.D.
Formerly Professor of Mathematical Physics in Yale University

BY

EDWIN BIDWELL WILSON, Ph.D.
Professor of Vital Statistics in
Harvard School of Public Health

NEW HAVEN
YALE UNIVERSITY PRESS

http://www.archive.org/details/117714283
Vector Analysis

A Text-Book for the Use of Students of Mathematics and Physics, Founded Upon the Lectures of J. Willard Gibbs.

J. Willard Gibbs

Reprints from the collection of the University of Michigan Library.