#### The Dirac Delta function

Ernesto Estévez Rams estevez@imre.oc.uh.cu

Instituto de Ciencia y Tecnología de Materiales (IMRE)-Facultad de Física Universidad de la Habana



IUCr International School on Crystallography, Brazil, 2012.
III Latinoamerican series

#### Outline

- 1 Introduction
  - Defining the Dirac Delta function
- Dirac delta function as the limit of a family of functions
- 3 Properties of the Dirac delta function
- ② Dirac delta function obtained from a complete set of orthonormal functions
  - Dirac comb
- 5 Dirac delta in higher dimensional space
- Recapitulation
- Exercises
- 8 References





 $\overline{\text{Introduction}}$   $\delta$  as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

#### The Kronecker Delta



Suppose we have a sequence of values  $\{a_1, a_2, \ldots\}$  and we wish to select algebraically a particular value labeled by its index i





## The Kronecker Delta

Definition (Kronecker delta)

$${}^{K}\delta_{ij} = \left\{ \begin{array}{cc} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

Picking one member of a set algebraically



$$\sum_{j=1} a_j^K \delta_{ij} = a_i$$



## The Kronecker Delta

Definition (Kronecker delta)

$${}^{K}\delta_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

Picking one member of a set algebraically



$$\sum_{j=1} a_j^K \delta_{ij} = a_i$$



Introduction

# Properties of the Kronecker Delta

- $\sum_{i}^{K} \delta_{ij} = 1$ : Normalization condition.
- ${}^{K}\delta_{ij} = {}^{K}\delta_{ji}$ : Symmetry property.



# Properties of the Kronecker Delta

- $\sum_{j}^{K} \delta_{ij} = 1$ : Normalization condition.
- ${}^{K}\delta_{ij} = {}^{K}\delta_{ji}$ : Symmetry property.



 $\overline{\text{Introduction}}$   $\delta$  as a limit Properties Orthonormal Higher dimen. Recap Exercises Ref.

# Spotting a point in the mountain profile







We want to pick up just a narrow window of the whole view



## How to deal with continuous functions?



We want to do the same with a continuous function.



# Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a, b) and suppose we want to pick up algebraically the value of f(x) at a particular point labeled by  $x_0$ .

In analogy with the Kronecker delta let us define a selector function  ${}^D\delta(x)$  with the following two properties:

- $\int_a^b f(x)^D \delta(x-x_0) dx = f(x_0)$ : Selector or sifting property
- $\int_a^b \int_a^b \delta(x-x_0) dx = 1$ : Normalization condition



# Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a, b) and suppose we want to pick up algebraically the value of f(x) at a particular point labeled by  $x_0$ .

In analogy with the Kronecker delta let us define a selector function  ${}^D\delta(x)$  with the following two properties:

- $\int_a^b f(x)^D \delta(x-x_0) dx = f(x_0)$ : Selector or sifting property
- $\int_a^b D \delta(x-x_0) dx = 1$ : Normalization condition



# Defining the Dirac Delta function

To be more general consider f(x) to be continuous in the interval (a, b) except in a finite number of points where finite discontinuities occurs, then the Dirac Delta can be defined as

#### Definition (Dirac delta function)

$$\int_{a}^{b} f(x)\delta(x-x_{0})dx = \begin{cases} \frac{1}{2}[f(x_{0}^{-}) + f(x_{0}^{+}) & x_{0} \in (a,b) \\ \frac{1}{2}f(x_{0}^{+}) & x_{0} = a \\ \frac{1}{2}f(x_{0}^{-}) & x_{0} = b \\ 0 & x_{0} \notin (a,b) \end{cases}$$



## A bit of history

## Siméon Denis Poisson (1781-1840)



In 1815 Poisson already for sees the  $\delta(x-x_0)$  as a selector function using for this purpose Lorentzian functions. Cauchy (1823) also made use of selector function in much the same way as Poisson and Fourier gave a series representation on the delta function (More on this later).

#### Paul Adrien Maurice Dirac (1902-1984)



Dirac "rediscovered" the delta function that now bears his name in analogy for the continuous case with the Kronecker delta in his seminal works on quantum mechanics.



## What does it look like?

$$\delta_p(x - x_0) = \begin{cases} p & x \in (x_0 - 1/2p, x_0 + 1/2p) \\ 0 & x \notin (x_0 - 1/2p, x_0 + 1/2p) \end{cases}$$





# What does it look like?







## What does it look like?



$$\int_{-\infty}^{\infty} \delta_p(x) \, dx = \int_{-1/2p}^{1/2p} p \, dx = 1$$

# Definition (Dirac delta function)

$$\delta(x - x_0)dx = \begin{cases} \infty & x = x_0 \\ 0 & x \neq x_0 \end{cases}$$



Properties

Recap

#### What does it look like?



## Definition (Dirac delta function)

$$\delta(x - x_0) = \begin{cases} \infty & x = x_0 \\ 0 & x \neq x_0 \end{cases}$$

- The above expression is just "formal", the  $\delta(x)$  must be always understood in the context of its selector property i.e. within the integral
- $\delta(x)$  is defined more rigorously in terms of a distribution or a functional (generalized function)



# Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of functions  $\delta_p$  which must comply with two conditions:

- $\lim_{p\to\infty}\int_{-\infty}^{\infty}\delta_p(x)dx=1$ : Normalization condition
- $\lim_{p\to\infty} \frac{\delta_p(x\neq 0)}{\lim_{x\to 0} \delta_p(x)} = 0$  Singularity condition.



# Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of functions  $\delta_p$  which must comply with two conditions:

- $\lim_{p\to\infty}\int_{-\infty}^{\infty}\delta_p(x)dx=1$ : Normalization condition
- $\lim_{p\to\infty} \frac{\delta_p(x\neq 0)}{\lim_{x\to 0} \delta_p(x)} = 0$  Singularity condition.



#### ... as the limit of Gaussian functions

# $\delta_p(x)$ Gaussian family

$$\delta_p(x) = \sqrt{\frac{p}{\pi}} \exp\left(-px^2\right)$$





#### ... as the limit of Gaussian functions

#### Normalization condition

$$\int_{-\infty}^{\infty} \delta_p(x)dx = \sqrt{\frac{p}{\pi}} \int_{-\infty}^{\infty} \exp\left(-px^2\right) dx = \sqrt{\frac{1}{\pi}} \int_{-\infty}^{\infty} \exp\left(-px^2\right) d(\sqrt{p}x) = \sqrt{\frac{1}{\pi}} \int_{-\infty}^{\infty} \exp\left(-t^2\right) dt = 2\sqrt{\frac{1}{\pi}} \int_{0}^{\infty} \exp\left(-t^2\right) dt$$

$$I = \int_0^\infty e^{-t^2} dt$$

$$I^2 = \int_0^\infty e^{-y^2} dy \, \int_0^\infty e^{-z^2} dz = \int \int_0^\infty \exp(y^2 + z^2) dy dz$$



Ref.

#### Normalization condition

$$\left\{ \begin{array}{c} r^2 = y^2 + z^2 \\ y = r\cos\phi \\ z = r\sin\phi \end{array} \right\}$$

$$I^{2} = \int_{0}^{\pi/2} d\phi \int_{0}^{\infty} e^{-r^{2}} r dr = \frac{\pi}{4} \int_{0}^{\infty} e^{-s} ds = \frac{\pi}{4}$$

$$I = \frac{\sqrt{\pi}}{2}$$

$$\int_{-\infty}^{\infty} \delta_{p}(x) dx = 1$$



## ... as the limit of Gaussian functions

#### Singularity condition

$$\lim_{p \to \infty} \frac{\delta_p(x \neq 0)}{\lim_{m \to 0} \delta_p(x)} = \lim_{p \to \infty} \frac{\sqrt{\frac{p}{\pi}} e^{-px^2}}{\sqrt{\frac{p}{\pi}}} = 0$$



## ... as the limit of Lorentzian functions

# $\delta_p(x)$ Lorentzian family

$$\delta_p(x) = \frac{1}{p} \frac{p}{1 + p^2 x^2}$$





## ... as the limit of Lorentzian functions

#### Normalization condition

$$\int_{-\infty}^{\infty} \delta_p(x) dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{p dx}{1 + p^2 x^2} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{dt}{1 + t^2} = \frac{1}{\pi} \lim_{k \to \infty} \arctan t \Big|_{t=-k}^{t=k} = \frac{2}{\pi} \lim_{k \to \infty} \arctan k = 1$$





#### ... as the limit of Lorentzian functions

#### Singularity condition

$$\begin{split} & \lim_{p \to \infty} \frac{\delta_p(x \neq 0)}{\lim_{x \to 0} \delta_p(x)} = \\ & \frac{1}{\pi} \lim_{p \to \infty} \frac{\frac{p}{1 + p^2 x^2}}{p} = \\ & \frac{1}{\pi} \lim_{p \to \infty} \frac{1}{1 + p^2 x^2} = 0 \end{split}$$



## ... as the limit of Sinc functions

# $\delta_p(x)$ Sinc family

$$\delta_p(x) = \frac{p}{\pi} \frac{\sin px}{px}$$





### ... as the limit of Sinc functions

#### Normalization condition

$$\int_{-\infty}^{\infty} \delta_p(x) dx = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin(px) dx}{x} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sin z}{z} dz = \frac{2}{\pi} \int_{0}^{\infty} \frac{\sin z}{z} dz = \frac{2}{\pi} \frac{\pi}{2} = 1$$



#### ... as the limit of Sinc functions

#### Singularity condition

$$\lim_{p \to \infty} \frac{\delta_p(x \neq 0)}{\lim_{x \to 0} \delta_p(x)} = \lim_{p \to \infty} \frac{\frac{1}{\pi} \frac{\sin(px)}{x}}{\frac{p}{\pi}} = \lim_{p \to \infty} \frac{\sin(px)}{px} = 0$$

# $\delta_p(x)$ alternative definition of the Sinc family

$$\delta_p(x) = \frac{1}{2\pi} \int_{-p}^p e^{\pm itx} dt$$
$$\delta_p(x) = \frac{1}{\pi} \int_0^p \cos(tx) dt$$



# Properties of the Dirac delta function



Let us denote by  $x_n$  the roots of the equation f(x) = 0 and suppose that  $f'(x_n) \neq 0$  then

## Composition of functions

$$\delta(f(x)) = \sum_{n} \frac{\delta(x - x_n)}{|f'(x_n)|}$$



- $\delta(-x) = \delta(x)$  (symmetry property).
- $\delta(ax) = \frac{\delta(x)}{|a|}$  (scaling property).
- $\delta(ax-x_0) = \frac{\delta(x-\frac{x_0}{a})}{|a|}$  (a more general formulation of the scaling property).



- $\delta(-x) = \delta(x)$  (symmetry property).
- $\delta(ax) = \frac{\delta(x)}{|a|}$  (scaling property).
- $\delta(ax-x_0)=\frac{\delta(x-\frac{x_0}{a})}{|a|}$  (a more general formulation of the scaling property).

• 
$$\delta(x^2 - a^2) = \frac{\delta(x-a) + \delta(x+a)}{2|a|}$$
.



- $\delta(-x) = \delta(x)$  (symmetry property).
- $\delta(ax) = \frac{\delta(x)}{|a|}$  (scaling property).
- $\delta(ax x_0) = \frac{\delta(x \frac{x_0}{a})}{|a|}$  (a more general formulation of the scaling property).

• 
$$\int_{-\infty}^{\infty} g(x)\delta(f(x))dx = \sum_{n} \frac{g(x_n)}{|f'(x_n)|}$$



- $\delta(-x) = \delta(x)$  (symmetry property).
- $\delta(ax) = \frac{\delta(x)}{|a|}$  (scaling property).
- $\delta(ax-x_0) = \frac{\delta(x-\frac{x_0}{a})}{|a|}$  (a more general formulation of the scaling property).

• 
$$\int_{-\infty}^{\infty} g(x)\delta(f(x))dx = \sum_{n} \frac{g(x_n)}{|f'(x_n)|}$$



#### Convolution

#### Convolution

$$f(x)\otimes\delta(x+x_0) = \int_{-\infty}^{\infty} f(\varsigma)\delta(\varsigma - (x+x_0))d\varsigma = f(x+x_0)$$



The effect of convolving with the position-shifted Dirac delta is to shift f(t) by the same amount.

• 
$$\int_{-\infty}^{\infty} \delta(\zeta - x) \delta(x - \eta) dx = \delta(\zeta - \eta)$$





#### Convolution

#### Convolution

$$f(x)\otimes\delta(x+x_0)=\int_{-\infty}^{\infty}f(\varsigma)\delta(\varsigma-(x+x_0))d\varsigma=f(x+x_0)$$



The effect of convolving with the position-shifted Dirac delta is to shift f(t) by the same amount.

• 
$$\int_{-\infty}^{\infty} \delta(\zeta - x) \delta(x - \eta) dx = \delta(\zeta - \eta)$$





Properties

#### Heaviside

## Definition (Step function)

$$\Theta(x) = \frac{1}{2}(1 + \frac{x}{|x|})$$

#### Definition (Step function)

$$\Theta(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\frac{d\Theta}{dx} = \frac{1}{2} \frac{d}{dx} \frac{x}{|x|} = \frac{1}{2} \lim_{p \to \infty} \frac{d}{dx} \frac{2}{\pi} \arctan(px) = \frac{1}{\pi} \lim_{p \to \infty} \frac{p}{1 + p^2 x^2} = \delta(x)$$



$$\delta(x) = \frac{d\Theta(x)}{dx}$$



#### Heaviside

# Definition (Step function)

Properties

$$\Theta(x) = \frac{1}{2}(1 + \frac{x}{|x|})$$

#### Definition (Step function)

$$\Theta(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

$$\frac{d\Theta}{dx} = \frac{1}{2} \frac{d}{dx} \frac{x}{|x|} = \frac{1}{2} \lim_{p \to \infty} \frac{d}{dx} \frac{2}{\pi} \arctan(px) = \frac{1}{\pi} \lim_{p \to \infty} \frac{p}{1 + p^2 x^2} = \delta(x)$$

#### Heaviside



$$\delta(x) = \frac{d\Theta(x)}{dx}$$



Introduction  $\delta$  as a limit (Properties) Orthonormal Higher dimen. Recap Exercises Ref.

### Heaviside







#### Fourier transform of the Dirac delta function

#### Fourier transform

$$\Gamma[\delta(x)] = \widehat{\delta}(x^*) \equiv \int_{-\infty}^{\infty} \delta(x) \exp(-2\pi i x^* x) dx = 1$$

This property allow us to state yet another definition of the Dirac delta as the inverse Fourier transform of f(x) = 1

Definition (Dirac delta function)

$$\delta(x) = \int_{-\infty}^{\infty} \exp(2\pi i x^* x) dx^*$$



#### Fourier transform of the Dirac delta function

#### Fourier transform

$$\Gamma[\delta(x)] = \widehat{\delta}(x^*) \equiv \int_{-\infty}^{\infty} \delta(x) \exp(-2\pi i x^* x) dx = 1$$

This property allow us to state yet another definition of the Dirac delta as the inverse Fourier transform of f(x) = 1

#### Definition (Dirac delta function)

$$\delta(x) = \int_{-\infty}^{\infty} \exp(2\pi i x^* x) dx^*$$



# Dirac delta function obtained from a complete set of orthonormal functions

Let the set of functions  $\{\psi_n\}$  be a complete system of orthonormal functions in the interval (a, b) and let x and  $x_0$  be inner points of that interval. Then

#### Theorem (Orthonormal functions)

$$\sum_{n} \psi_n^*(x)\psi_n(x_0) = \delta(x - x_0)$$

To proof the theorem we shall demonstrate that the left hand side has the sifting property of the Dirac distribution

$$I = \int_{a}^{b} f(x) \sum_{n} \psi_{n}^{*}(x) \psi_{n}(x_{0}) dx = f(x_{0})$$
  
$$f(x) = \sum_{m} c_{m} \psi_{m}(x) \qquad c_{m} = \int_{a}^{b} f(x) \psi_{m}^{*}(x) dx$$



# Dirac delta function obtained from a complete set of orthonormal functions

$$I = \int_a^b \sum_m c_m \psi_m(x) \sum_n \psi_n^*(x) \psi_n(x_0) dx =$$
$$\sum_m c_m \sum_n \psi_n(x_0) \int_a^b \psi_n^*(x) \psi_m(x) dx$$

$$\int_{a}^{b} \psi_{n}^{*}(x)\psi_{m}(x)dx = {}^{K}\delta_{mn}$$

$$I = \sum_{n} c_m \sum_{n} \psi_n(x_0)^K \delta_{mn} = \sum_{n} c_m \psi_n(x_0) = f(x_0)$$





#### Dirac comb





#### Dirac comb

The set  $\{\frac{1}{\sqrt{(|a|)}}\exp{(2\pi inx/a)}\}$  forms a complete set of orthonormal functions, then

$$\delta(x) = \frac{1}{|a|} \sum_{n=-\infty}^{\infty} \exp(2\pi i n x/a)$$

each summand in the LHS in the above expression is periodic with period |a| therefore the whole sum is periodic with the same period and

#### Dirac comb

$$\sum_{m=-\infty}^{\infty} \delta(x - ma) = \frac{1}{|a|} \sum_{n=-\infty}^{\infty} \exp(2\pi i nx/a)$$



#### Fourier transform of a Dirac comb

$$\int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x - ma) \exp(-2\pi i x^* x) dx =$$

$$\sum_{m=-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x - ma) \exp(-2\pi i x^* x) dx = \sum_{m=-\infty}^{\infty} \exp(2\pi i x^* ma)$$

#### Theorem (Fourier transform of a Dirac comb)

$$\Gamma\left[\sum_{m=-\infty}^{\infty} \delta(x-ma)\right] = \frac{1}{|a|} \sum_{h=-\infty}^{\infty} \delta(x^* - h/a) = |a^*| \sum_{h=-\infty}^{\infty} \delta(x^* - ha^*)$$

The Fourier transform of a Dirac comb is a Dirac comb



(Higher dimen.)

# Dirac delta in higher dimensional space

#### Dirac delta in higher dimensions. Cartesian coordinates

$$\int \cdots \int f(\vec{x})\delta(\vec{x} - \vec{x_0})d^N x = f(\vec{x_0})$$

which comes from

$$\int \cdots \int f(x_1, x_1, \dots x_N) \delta(x_1 - x_{01}) \delta(x_2 - x_{02}) \dots \delta(x_N - x_{0N}) dx_1 dx_2 \dots dx_N = f(x_{01}, x_{02}, \dots x_{0N})$$

### Definition (Dirac delta in higher dimensions. Cartesian coordinates)

$$\delta(\vec{x} - \vec{x_0}) = \delta(x_1 - x_{01})\delta(x_2 - x_{02}) \dots \delta(x_N - x_{0N}) = \prod_{s=1}^N \delta(x_s - x_{0s})$$



#### General coordinates

 $\{x_i\}$ : Cartesian coordinates  $\{y_i\}$ : General coordinates

$$x_{1} = x_{1}(y_{1}, \dots y_{N})$$

$$x_{2} = x_{2}(y_{1}, \dots y_{N})$$

$$\dots$$

$$J(y_{1}, y_{2}, \dots, y_{N}) = \begin{vmatrix} \frac{\partial x_{1}}{\partial y_{1}} & \frac{\partial x_{1}}{\partial y_{2}} & \dots & \frac{\partial x_{1}}{\partial y_{N}} \\ \frac{\partial x_{2}}{\partial y_{1}} & \frac{\partial x_{2}}{\partial y_{2}} & \dots & \frac{\partial x_{2}}{\partial y_{N}} \\ \dots & \dots & \dots & \dots \\ \frac{\partial x_{N}}{\partial y_{1}} & \frac{\partial x_{N}}{\partial y_{2}} & \dots & \frac{\partial x_{N}}{\partial y_{N}} \end{vmatrix}$$

Definition (Dirac delta in higher dimensions. General coordinates)

$$\delta(\vec{x} - \vec{x_0}) = \frac{1}{|J(y_1, y_2, ..., y_N)|} \delta(\vec{y} - \vec{y_0})$$





# Oblique coordinates

$$x_1 = a_{11}y_1 + a_{12}y_2 \dots a_{1N}y_N$$
 
$$J(y_1, y_2, \dots, y_N) =$$
 
$$x_2 = a_{11}y_1 + a_{22}y_2 \dots a_{2N}y_N$$
 
$$\vdots$$
 
$$a_{11} \quad a_{12} \quad \dots \quad a_{1N}$$
 
$$a_{21} \quad a_{22} \quad \dots \quad a_{2N}$$
 
$$\dots \quad \dots \quad \dots$$
 
$$a_{N1} \quad a_{N2} \quad \dots \quad a_{NN}$$

$$\vec{x} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1N} \\ a_{21} & a_{22} & \dots & a_{2N} \\ \dots & \dots & \dots & \dots \\ a_{N1} & a_{N2} & \dots & a_{NN} \end{pmatrix} \vec{y}$$

Definition (Dirac delta in higher dimensions. Oblique coordinates)

$$\delta(\vec{x} - \vec{x_0}) = \frac{1}{|\,|\,|A||\,|} \delta(\vec{y} - \vec{y_0}) = \frac{1}{\sqrt{|\,|\,|G||\,|}} \delta(\vec{y} - \vec{y_0})$$





# Recap: Definitions

$$\delta(x - x_0)dx = \begin{cases} \infty & x = x_0 \\ 0 & x \neq x_0 \end{cases}$$

$$\delta(x) = \lim_{p \to \infty} \sqrt{\frac{p}{\pi}} \exp(-px^2)$$

$$\delta(x) = \lim_{p \to \infty} \frac{1}{p} \frac{p}{1 + p^2 x^2}$$

$$\delta(x) = \lim_{p \to \infty} \frac{p}{\pi} \frac{\sin px}{px}$$

$$\delta(x) = \int_{-\infty}^{\infty} \exp(2\pi i x^* x) dx^*$$

$$\delta(x - x_0) = \sum \psi_n^*(x)\psi_n(x_0)$$

where  $\{\psi_n^*(x)\}\$  is a complete set of orthornormal functions.



$$\int_{a}^{b} f(x)\delta(x-x_{0})dx = \begin{cases}
\frac{1}{2}[f(x_{0}^{-}) + f(x_{0}^{+}) & x_{0} \in (a,b) \\
\frac{1}{2}f(x_{0}^{+}) & x_{0} = a \\
\frac{1}{2}f(x_{0}^{-}) & x_{0} = b \\
0 & x_{0} \notin (a,b)
\end{cases}$$

$$\delta(f(x)) = \sum_{n} \frac{\delta(x-x_{n})}{|f'(x_{n})|} \qquad \int_{-\infty}^{\infty} g(x)\delta(f(x))dx = \sum_{n} \frac{g(x_{n})}{|f'(x_{n})|}$$

$$\delta(-x) = \delta(x) \qquad \delta(ax-x_{0}) = \frac{\delta(x-\frac{x_{0}}{a})}{|a|}$$

$$\delta(x^{2}-a^{2}) = \frac{\delta(x-a) + \delta(x+a)}{2|a|} \qquad f(x) \otimes \delta(x+x_{0}) = f(x+x_{0})$$

$$\Gamma\left[\sum_{m=-\infty}^{\infty} \delta(x - ma)\right] = |a^*| \sum_{h=-\infty}^{\infty} \delta(x^* - ha^*) \qquad \Gamma[\delta(x)] = \sum_{m=-\infty}^{\infty} \delta(x - ma) = \frac{1}{|a|} \sum_{n=-\infty}^{\infty} \exp(2\pi i nx/a)$$

 $m = -\infty$ 



 $\Gamma[\delta(x)] = \widehat{\delta}(x^*) = 1$ 

# Recap: Higher Dimensions

Cartesian coordinates:

$$\int \cdots \int f(\vec{x})\delta(\vec{x} - \vec{x_0})d^N x = f(\vec{x_0})$$

$$\delta(\vec{x} - \vec{x_0}) = \delta(x_1 - x_{01})\delta(x_2 - x_{02})\dots\delta(x_N - x_{0N}) = \prod_{s=1}^N \delta(x_s - x_{0s})$$

General Coordinates  $\{y_i\}$ :

$$\delta(\vec{x} - \vec{x_0}) = \frac{1}{|J(y_1, y_2, \dots, y_N)|} \delta(\vec{y} - \vec{y_0})$$

Oblique Coordinates  $\vec{x} = A \cdot \vec{y}$ :

$$\delta(\vec{x} - \vec{x_0}) = \frac{1}{||A|||} \delta(\vec{y} - \vec{y_0}) = \frac{1}{\sqrt{||G|||}} \delta(\vec{y} - \vec{y_0})$$





Exercises

#### Exercises

#### Prove:

- $\delta(f(x)) = \sum_n \frac{\delta(x-x_n)}{|f'(x_n)|}$  (Hint: develop f(x) in Taylor series around  $x_n$  and prove the sifting property with  $\delta(f(x))$
- $\sum_{n=-\infty}^{\infty} f(na) = |x^*| \sum_{m=-\infty}^{\infty} \widehat{f}(mx^*)$  (Poisson summation formula)

• 
$$\lim_{p\to\infty} \frac{\sin((2p+1)\pi \frac{x-x_0}{a})}{\sin(\pi \frac{x-x_0}{a})} = |a| \sum_{m=-\infty}^{\infty} \delta(x-x_0-ma)$$



#### Exercises

Prove that on the limit  $p \to \infty$  the sawtooth funtion tends to the Dirac comb









#### References



The Dirac distribution http://physics.fme.vutbr.cz/~komrska

V. Balakrishnan
All about the Dirac Delta Function(?)



