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The Kronecker Delta

Suppose we have a sequence
of values {a1,az,...} and we
wish to select algebraically a
particular value labeled by its
index i
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Picking one member of a set algebraically
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° >, K§;; = 1: Normalization condition.

o K§,; = K§;;: Symmetry property.

The Dirac Delta function
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Properties of the Kronecker Delta

. K(Si]- = 1: Normalization condition.

i; = ¥8;;: Symmetry property.

Exercises
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Spotting a point in the mountain profile

We want to pick up
just a narrow window
of the whole view
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How to deal with continuous functions ?

We want to do the
same with a
continuous function.
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Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a,b) and suppose we
want to pick up algebraically the value of f(x) at a particular point labeled
by Zo-

In analogy with the Kronecker delta let us define a selector function P§(x)
with the following two properties:

° ff F(@)Pé(x — xo)dx = f(x0): Selector or sifting property
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Defining the Dirac Delta function

Consider a function f(x) continuous in the interval (a,b) and suppose we
want to pick up algebraically the value of f(x) at a particular point labeled
by Zo-

In analogy with the Kronecker delta let us define a selector function P§(x)
with the following two properties:

° ff F(@)Pé(x — xo)dx = f(x0): Selector or sifting property

° f; D§(z — xo)dz = 1: Normalization condition
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Defining the Dirac Delta function

To be more general consider f(x) to be continuous in the interval (a, b)
except in a finite number of points where finite discontinuities occurs, then
the Dirac Delta can be defined as

Definition (Dirac delta function)

%[f(wo_)"‘f(xé)—] zo € (a,b)

6 Lt To=a
/a A = ) = %; n
0 20 ¢ (a,b)

Ref.
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. .
A bit of history

Siméon Denis Poisson (1781-1840)

In 1815 Poisson already for sees the d(z — xo) as a selector
function using for this purpose Lorentzian functions. Cauchy
(1823) also made use of selector function in much the same
way as Poisson and Fourier gave a series representation on
the delta function(More on this later).

Paul Adrien Maurice Dirac (1902-1984)

Dirac "rediscovered” the delta function that now bears his
name in analogy for the continuous case with the Kronecker
delta in his seminal works on quantum mechanics.
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B € (zo — 1/2p,z0 + 1/2p)
bp(x — o) —{ ’8 i¢ (iﬁ - 1/22,23 +1/2£)

The Dirac Delta function
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. .
What does it look like ?

\ p [ f(z)d
p X f(x)
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70, 0p(2) dae = f_lﬁgppda: =1

00 T =mo
T # xo

0(z — zo)dx = { 0

The Dirac Delta function
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. .
What does it look like ?

Definition (Dirac delta function)

00 T=zx
5(9:_230):{ 0 m;«émﬁ

@ The above expression is just "formal”, the §(x) must be always understood in
the context of its selector property i.e. within the integral

@ §(zx) is defined more rigorously in terms of a distribution or a functional
(generalized function)
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Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of
functions 6, which must comply with two conditions:

o limy o0 ffooo 0p(x)dx = 1: Normalization condition
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Dirac delta function as the limit of a family of functions

The Dirac delta function can be pictured as the limit in a sequence of
functions 6, which must comply with two conditions:

o limy o0 ffooo 0p(x)dx = 1: Normalization condition

@ limp 00 % = 0 Singularity condition.
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... as the limit of Gaussian functions

Op(X)

p/n

-wp e
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. as the limit of Gaussian functions

Normalization condition

R @ | e (cptyan - @ | e ity -
\/g/:: exp (—t%)dt = 2\/2/00o exp (—t%)dt

[=[Fe Pt

=[x e_dey 15 e dz = [ JS exp (y® + 2%)dydz
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Normalization condition

P2 =y 422
Y =1TCcos
z =rsin¢

TRdg [ e rdr = T [P e tds = T

0
NG
I=x

70, Sp(x)de =1

The Dirac Delta function
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... as the limit of Gaussian functions

Singularity condition

p—roo limg 0 0p(2)

2

Dp ,—px
. \/;e _
hm 7})—0

p—ro0 \/>
T
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... as the limit of Lorentzian functions

Op(X)

-1/p p
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Higher dimen. Recap

Introduction Properties  Orthonormal

... as the limit of Lorentzian functions

Normalization condition

> 1 [ pde 1 /°° dt

) dr = — _— = — _— =
100 p(z)dz 71_/7001_~_Z)2m2 ) o 1+12

1 lim arctantﬁi'ﬁk = 2 lim arctank =1
T k—oo T k—oo

y

/2|

ArcTan(x)

Exercises Ref.
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... as the limit of Lorentzian functions

Singularity condition

; dp(z #0) _
plggo limg—0 dp(x) -

1 s
= lim R —
T p—o0 p

1 1

= lim ——— =
T p—oo 1 + p2a?

Ref.
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... as the limit of Sinc functions

Ip(x)
p
T
p sin px
6,,(1:) = ; p_.'II 2 f
p
X
V ﬁ\/ 3t
p p
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Higher dimen. Recap

Introduction Properties  Orthonormal

... as the limit of Sinc functions

Normalization condition

/00 6p(x)d:c:%/oo M:

1 [ sinz
— dz =
T ) oo 2

Exercises

Ref.
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... as the limit of Sinc functions

Singularity condition

p(x # 0)

lim 7 =
poreo limg 0 6p(z)
1 sin (px) .
lm = — I 52D
p—ro0 b= p—o0 px

dp(z) = %f{cos (tz)dt

Recap

Exercises

Ref.
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Properties of the Dirac delta function

Let us denote by z, the roots of the equation f(z) = 0 and suppose that
f,(wn) # 0 then
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Important consequences of the composition property are

@ §(—z) = é(x) (symmetry property).

o d(ax) = % (scaling property).

s(z—20)

@ f(ax —xzo) = o]

(a more general formulation of the scaling property).

The Dirac Delta function
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Important consequences of the composition property are
@ §(—z) = é(x) (symmetry property).

® d(ax) = % (scaling property).

s(z—20)

@ d(ax — o) = o]

Recap

Exercises

(a more general formulation of the scaling property).

Ref.
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Important consequences of the composition property are

@ §(—z) = é(x) (symmetry property).

é(x)

® d(ax) = ISTl (scaling property).

@ d(ax — o) =

la]

s(z—20)

(a more general formulation of the scaling property).

° 5(12 _ a2) _ $(z=a)+b(zta)

2[al

Ref.
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Important consequences of the composition property are

@ §(—z) = é(x) (symmetry property).
® d(ax) = I(— (scaling property).

_To
@ d(ax —xo) = % (a more general formulation of the scaling property).

o 6(a? — a?) = de=a)tdta)

o [ 9(@)8(f(@))da = 3, S

Ref.
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Convolution

F@)®(ztwo) = [Z, (S)3(s—(2+m0))ds = f(z+o0)

The effect of convolving with the position-shifted Dirac delta is to shift f(¢)
by the same amount.
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Convolution

f(@)®8(z+x0) = [0 f(s)d(s—(x+x0))ds = f(z+x0)

The effect of convolving with the position-shifted Dirac delta is to shift f(¢)
by the same amount.

o [22,0(C—)d(x —m)dx = 5(C —m))
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. o
Heaviside

Definition (Step function)

1 >0

Definition (Step function)
J o) = { 0 x<0

O(z) = 31+ &)

o _1d o 1 lim —zarctan( x) =
de ~ 2dx x| 2p—oo dx P

1

o T gz~ 0(®)
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5 as a limit Orthonormal

Higher dimen.

Recap Exercises Ref.
Heaviside
Definition (Step function) Do (e (rnsiio:)
1 >0
() 1 = =
(z) =31+ %) J O(x) {0 .20
o _1dz 1 lim izaurctan( z) =
de ~ 2dx x| 2p—oo dx P
1

p _
o T gz~ 0(®)

d@(z)

o(z) =

29 / 45



Introduction § as a limit Orthonormal  Higher dimen. Recap Exercises Ref.

Heaviside
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Fourier transform of the Dirac delta function

I'd(z)] = 0(z*) = [ () exp (—2miz*z)dx = 1

— 00
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Fourier transform of the Dirac delta function

I'é(z)] =6(z*) = [7_ 6(x) exp (—2miz*z)de = 1

This property allow us to state yet another definition of the Dirac delta as
the inverse Fourier transform of f(x) =1

Definition (Dirac delta function)

6(30):/ exp (2miz”"x)dz”

— o0

Ref.
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Dirac delta function obtained from a complete set of
orthonormal functions

Let the set of functions {¢ } be a complete system of orthonormal functions
in the interval (a,b) and let x and zo be inner points of that interval. Then

Theorem (Orthonormal functions) J

> Y (@)n(20) = 6(x — w0)

To proof the theorem we shall demonstrate that the left hand side has the
sifting property of the Dirac distribution

I= [ f(x) 3, ¥i(@)dn(zo)da = f(zo)
F@) = emtm(@)  em = [0 @) (x)de
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Dirac delta function obtained from a complete set of
orthonormal functions

b
:/ Zcmwm Z¢n ¢n IO diU -
e Y nleo) [ e

J2 (@) m(@)de = K 6mn

I= Zcm Z¢n(xo) K mn =
> cmtpm(xo) = f(=o0)
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Dirac comb

Definition (Dirac comb)
> 0(x—ma)

>
>

Ref.
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Recap Exercises Ref.

Properties Orthonormal Higher dimen.

Dirac comb

Introduction § as a limit

The set {
functions, then

\ﬂll 5 eXp (2minz/a)} forms a complete set of orthonormal

5(z) = |}T\ > exp(2mina/a)

each summand in the LHS in the above expression is periodic with period
|a| therefore the whole sum is periodic with the same period and

6(x — ma) = ﬁ >o2 . exp (2minz/a)

>
m=—00
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Fourier transform of a Dirac comb

/ Z d(x — ma) exp(—2miz*z)dx =

[e9]

Z / §(z — ma) exp(—2miz"x)dr = Z exp(2miz ma)

m=—oo m=—o00

Theorem (Fourier transform of a Dirac comb)

I o 0 —ma)] = 5 3252 0(2" — h/a) =a”| 3572 _ 8(2" — ha”)

m=—o00

Ref.

|

The Fourier transform of a Dirac comb is a Dirac comb
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Dirac delta in higher dimensional space

[ [ F@8(E — ap)d™ e = f(a)

which comes from

f f f(xla LAPRER xN)(s(xl _$01)5($2_3302) e 5($N—xow)dac1dx2 o.dry =
f(zo1, xo27. .. zoN)

Definition (Dirac delta in higher dimensions. Cartesian
coordinates)

8(% — 20) = 6(x1 — 201)d(x2 — T02) - .. 6(xn — zon) = [[, 8(xs — Tos)
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General coordinates

{z;}: Cartesian coordinates
{y:}: General coordinates

= Oz
r1=21(y1,...YN) o0
$2:x2(yl,-..y1\]) J(yl,yQ,-~~,yN): Tyf
o2

.CENZxN(yl,...yN) Oy1

Definition (Dirac delta in higher
dimensions. General coordinates)

= N 1 = =
6(23 - 1‘0) - IJ(y17y2,---,yN)|6(y _yo)

Recap

dxq
Oy2
dzo
Oy2

Oy2

Exercises

Az
OyN

YN
[ EN
YN

Ref.
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Oblique coordinates

T1 = a1y + a2y2...
T2 = a11Y1 + az2y2 ...

TN = anNi1y1 + an2yz2 ..

AINYN
A2NYN aill
a21
.ANNYN
Y ani
ail ai2
a1 a2
ani an2

J(y17y27"'7yN) =
a2 aiN
ao2 asN
an?2 QNN
aiN
aznN —

Y
aANN

Definition (Dirac delta in higher
dimensions. Oblique coordinates)

0(Z—xp) = més(?f—y_é) = \/ﬁcs(zf—y_é)

Ref.
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Recap: Definitions

d (1 T
= = — —(1
§(z — wo)dx = { OOO i;é zg §(x) = — (2( + Ix\)>
/ 1 p
) = lfm - —&
o(z) = lim p exp (—paz2) () pggo p 14 p2x2
p— o0 T

§(z) = lim P3HPT () :/_Oo exp (2miz"x)dx

p—oo T DT

0(x —x0) = Zlﬁl(l’)wn(mo)

where {¢;,(z)} is a complete set of orthornormal functions.
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Recap: Properties

Lf(eq) + f(af] 0 € (a,b)
g o Lf (@) n=a
/ f(@)d(z — xo)dx %f(ﬂfa) o — b
0 xo ¢ (a,b)
_ O0(z — zn) > . N — g(zn)
V@) =3 i | _s@atne =3 2
O(x — 20
5(~x) = b(z) bz — ) = = o )
da? - a?) = A=) F(@) ® 6(z + 20) = f(z + z0)

I i §(x —ma)] = |a*| i §(z* — ha") Io(z)] =6(=") =1

m=—o0 h=—oc0
Z o0(x —ma) = ﬁ Z exp (2minz/a)
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Recap: Higher Dimensions

Cartesian coordinates:

6(5— :L‘B) = (5($1 — x01)6(w2 — :Boz) .. 6(xN — J}()N) = H5($S

General Coordinates {y; }:

5T — 30) = 8 — 1
@=20) = Forge g W)

—

Oblique Coordinates & = A -
1 = 1

= mfs(?j— yo) = m(s(?j— yo)

—

(% — %)

Exercises Ref.
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Exercises

Prove:

° i(f(x)=>, % (Hint: develop f(z) in Taylor series around z,, and
prove the sifting property with §(f(x)))

o > f(na)=|z*|>0°__  f(ma*) (Poisson summation formula)

z—xzq

sin (2p+1)m=—2"0) la| °%°__ 6(z — o — ma)

z—x0
a2 )

o lim
p—oo sin (7
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Prove that on the limit p — oo the sawtooth funtion tends to the Dirac
comb

\\l\mN\J\N\,X

The Dirac Delta function
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